Kovac Ilija P, Dubé Marie-Pierre
Research Centre of the Montreal Heart Institute, 5000 Belanger - C1443, Montreal (Quebec) H1T 1C8, Canada.
BMC Proc. 2009 Dec 15;3 Suppl 7(Suppl 7):S77. doi: 10.1186/1753-6561-3-s7-s77.
Knowledge of simulated genetic effects facilitates interpretation of methodological studies. Genetic interactions for common disorders are likely numerous and weak. Using the 200 replicates of the Genetic Analysis Workshop 16 (GAW16) Problem 3 simulated data, we compared the statistical power to detect weak gene-gene interactions using a haplotype-based test in the UNPHASED software with genotypic mixed model (GMM) and additive mixed model (AMM) mixed linear regression model in SAS. We assumed a candidate-gene approach where a single-nucleotide polymorphism (SNP) in one gene is fixed and multiple SNPs are at the second gene. We analyzed the quantitative low-density lipoprotein trait (heritability 0.7%), modulated by simulated interaction of rs4648068 from 4q24 and another gene on 8p22, where we analyzed seven SNPs. We generally observed low power calculated per SNP (</= 37% at the 0.05 level), with the haplotype-based test being inferior. Over all tests, the haplotype-based test performed within chance, while GMM and AMM had low power (~10%). The haplotype-based and mixed models detected signals at different SNPs. The haplotype-based test detected a signal in 50 unique replicates; GMM and AMM featured both shared and distinct SNPs and replicates (65 replicates shared, 41 GMM, 27 AMM). Overall, the statistical signal for the weak gene-gene interaction appears sensitive to the sample structure of the replicates. We conclude that using more than one statistical approach may increase power to detect such signals in studies with limited number of loci such as replications. There were no results significant at the conservative 10-7 genome-wide level.
对模拟遗传效应的了解有助于对方法学研究进行解读。常见疾病的基因相互作用可能数量众多且作用微弱。我们使用遗传分析研讨会16(GAW16)问题3的200个重复模拟数据,比较了在UNPHASED软件中使用基于单倍型的检验与在SAS中使用基因型混合模型(GMM)和加性混合模型(AMM)混合线性回归模型来检测微弱基因-基因相互作用的统计功效。我们采用候选基因方法,其中一个基因中的单核苷酸多态性(SNP)是固定的,而另一个基因中有多个SNP。我们分析了定量低密度脂蛋白性状(遗传度0.7%),该性状受4q24上的rs4648068与8p22上另一个基因的模拟相互作用调节,在此我们分析了7个SNP。我们通常观察到每个SNP计算出的功效较低(在0.05水平下≤37%),基于单倍型的检验效果较差。在所有检验中,基于单倍型的检验表现与随机情况相当,而GMM和AMM的功效较低(约10%)。基于单倍型的检验和混合模型在不同的SNP处检测到信号。基于单倍型的检验在50个独特重复中检测到一个信号;GMM和AMM既有共享的SNP和重复,也有不同的SNP和重复(65个重复共享,41个GMM,27个AMM)。总体而言,微弱基因-基因相互作用的统计信号似乎对重复样本的结构敏感。我们得出结论,在诸如重复研究等位点数量有限的研究中,使用不止一种统计方法可能会提高检测此类信号的功效。在保守的全基因组水平10 - 7下没有显著结果。