Slungaard A, Mahoney J R
Department of Internal Medicine, University of Minnesota Medical School, Minneapolis 55455.
J Biol Chem. 1991 Mar 15;266(8):4903-10.
The potent cytotoxic capacity of eosinophils for parasites and host tissue has in part been attributed to the catalytic action of eosinophil peroxidase (EPO), which preferentially oxidizes Br- to the powerful bleaching oxidant HOBr in buffers that mimic serum halide composition (100 mM Cl-, 20-100 microM Br-, less than 1 microM I-). However, serum also contains 20-120 microM SCN-, a pseudohalide whose peroxidative product, HOSCN, is a weak, primarily sulfhydryl-reactive oxidant. Because of its relative abundance and high oxidation potential, we hypothesized that SCN-, not Br- or I-, is the major substrate for EPO in physiologic fluids. We find that in Earle's buffer (100 mM Cl-) supplemented with 100 microM Br- and varying concentrations of SCN-, HOBr production by activated eosinophils and purified EPO, assayed by conversion of fluorescein to dibromofluorescein, was 50% inhibited (ID50) by only 1 microM SCN-. SCN- also blocked (ID50 10 microM) EPO oxidation of I- to HOI, assayed as iodofluorescein, despite the presence of 100 microM (i.e. grossly supraphysiologic) I-. Thionitrobenzoic acid oxidation kinetics indicate that SCN- is the initial species oxidized by EPO in equimolar mixtures of SCN- and Br- and in human serum. EPO also catalyzed the covalent incorporation of [14C]SCN- into proteins in buffers regardless of Br- concentration and in human serum. Comparing the cytotoxicity of HOSCN and HOBr for host cells, we find that even subphysiologic concentrations of SCN- (3.3-10 microM) nearly completely abrogate the potent Br(-)-dependent toxicity of EPO for 51Cr-labeled aortic endothelial cells and isolated working rat hearts, recently developed models of eosinophilic endocarditis. Thus, HOSCN, hitherto best known as a bacteriostatic agent in saliva and milk, is likely also the major oxidant produced by EPO in physiologic fluids, and the presence of SCN- averts damage to EPO-coated host tissues that might otherwise accrue as a result of HOBr generation. In view of these findings, the potential role of HOSCN in eosinophil killing of parasitic pathogens deserves close examination.
嗜酸性粒细胞对寄生虫和宿主组织具有强大的细胞毒性,部分原因归因于嗜酸性粒细胞过氧化物酶(EPO)的催化作用。在模拟血清卤化物组成的缓冲液(100 mM Cl-、20 - 100 μM Br-、小于1 μM I-)中,EPO可将Br-优先氧化为强漂白氧化剂HOBr。然而,血清中还含有20 - 120 μM的硫氰酸盐(SCN-),这是一种拟卤化物,其过氧化产物HOSCN是一种较弱的、主要与巯基反应的氧化剂。由于其相对丰度和高氧化电位,我们推测在生理流体中,EPO的主要底物是SCN-,而非Br-或I-。我们发现,在补充了100 μM Br-和不同浓度SCN-的Earle缓冲液(100 mM Cl-)中,通过将荧光素转化为二溴荧光素测定,活化的嗜酸性粒细胞和纯化的EPO产生HOBr的量仅在1 μM SCN-时就受到50%的抑制(半数抑制浓度,ID50)。尽管存在100 μM(即远超生理浓度)的I-,SCN-也能阻断(ID50为10 μM)EPO将I-氧化为HOI(以碘荧光素测定)的反应。硫代硝基苯甲酸氧化动力学表明,在SCN-和Br-的等摩尔混合物以及人血清中,SCN-是被EPO氧化的初始物质。无论Br-浓度如何,在缓冲液以及人血清中,EPO还能催化将[14C]SCN-共价结合到蛋白质中。比较HOSCN和HOBr对宿主细胞的细胞毒性,我们发现,即使是亚生理浓度的SCN-(3.3 - 至10 μM)也几乎能完全消除EPO对51Cr标记的主动脉内皮细胞和离体工作大鼠心脏(最近开发的嗜酸性粒细胞性心内膜炎模型)的强大的、依赖Br-的毒性。因此,HOSCN迄今最广为人知的是其在唾液和乳汁中作为抑菌剂的作用,它可能也是生理流体中EPO产生的主要氧化剂,并且SCN-的存在避免了对EPO包被的宿主组织的损伤,否则这种损伤可能会因HOBr的产生而发生。鉴于这些发现,HOSCN在嗜酸性粒细胞杀灭寄生性病原体中的潜在作用值得密切研究。