Chandler Joshua D, Day Brian J
Department of Medicine, National Jewish Health , Denver, CO , USA.
Free Radic Res. 2015 Jun;49(6):695-710. doi: 10.3109/10715762.2014.1003372. Epub 2015 Jan 28.
Thiocyanate (SCN(-)) is a ubiquitous molecule in mammalian biology, reaching up to mM concentrations in extracellular fluids. Two- electron oxidation of SCN(-) by H2O2 produces hypothiocyanous acid (HOSCN), a potent anti-microbial species. This reaction is catalyzed by chordate peroxidases (e.g., myeloperoxidase and lactoperoxidase), occurring in human secretory mucosa, including the oral cavity, airway, and alimentary tract, and regulates resident and transient flora as part of innate immunity. Increasing SCN(-) levels limits the concentrations of a family of 2-electron oxidants (H2O2, hypohalous acids, and haloamines) in favor of HOSCN formation, altering the oxidative impact on host tissue by substitution of repairable thiol and selenol oxidations instead of biomolecule degradation. This fine-tuning of inflammatory oxidation paradoxically associates with maintained host defense and decreased host injury during infections, due in part to phylogenetic differences in the thioredoxin reductase system between mammals and their pathogens. These differences could be exploited by pharmacologic use of SCN(-). Recent preclinical studies have identified anti-microbial and anti-inflammatory effects of SCN(-) in pulmonary and cardiovascular animal models, with implications for treatment of infectious lung disease and atherogenesis. Further research is merited to expand on these findings and identify other diseases where SCN(-) may be of use. High oral bioavailability and an increased knowledge of the biochemical effects of SCN(-) on a subset of pro-inflammatory reactions suggest clinical utility.
硫氰酸盐(SCN(-))是哺乳动物生物学中普遍存在的分子,在细胞外液中的浓度可达毫摩尔级。H2O2将SCN(-)双电子氧化生成次硫氰酸(HOSCN),这是一种强效抗菌物质。该反应由脊索动物过氧化物酶(如髓过氧化物酶和乳过氧化物酶)催化,这些酶存在于人体分泌性黏膜中,包括口腔、气道和消化道,作为固有免疫的一部分调节常驻和暂居菌群。提高SCN(-)水平会限制一类双电子氧化剂(H2O2、次卤酸和卤胺)的浓度,有利于HOSCN的形成,通过取代可修复的硫醇和硒醇氧化而非生物分子降解来改变对宿主组织的氧化影响。这种炎症氧化的微调与感染期间宿主防御的维持和宿主损伤的减少存在矛盾关联,部分原因是哺乳动物与其病原体之间硫氧还蛋白还原酶系统的系统发育差异。这些差异可通过SCN(-)的药物应用加以利用。最近的临床前研究已确定SCN(-)在肺部和心血管动物模型中的抗菌和抗炎作用,对感染性肺病和动脉粥样硬化的治疗具有重要意义。值得进一步研究以扩展这些发现,并确定SCN(-)可能有用的其他疾病。高口服生物利用度以及对SCN(-)对一部分促炎反应的生化作用的更多了解表明其具有临床应用价值。