Wang Zeneng, DiDonato Joseph A, Buffa Jennifer, Comhair Suzy A, Aronica Mark A, Dweik Raed A, Lee Nancy A, Lee James J, Thomassen Mary Jane, Kavuru Mani, Erzurum Serpil C, Hazen Stanley L
From the Departments of Cellular and Molecular Medicine.
Pathobiology.
J Biol Chem. 2016 Oct 14;291(42):22118-22135. doi: 10.1074/jbc.M116.750034. Epub 2016 Sep 1.
The biochemical mechanisms through which eosinophils contribute to asthma pathogenesis are unclear. Here we show eosinophil peroxidase (EPO), an abundant granule protein released by activated eosinophils, contributes to characteristic asthma-related phenotypes through oxidative posttranslational modification (PTM) of proteins in asthmatic airways through a process called carbamylation. Using a combination of studies we now show EPO uses plasma levels of the pseudohalide thiocyanate (SCN) as substrate to catalyze protein carbamylation, as monitored by PTM of protein lysine residues into N-carbamyllysine (homocitrulline), and contributes to the pathophysiological sequelae of eosinophil activation. Studies using EPO-deficient mice confirm EPO serves as a major enzymatic source for protein carbamylation during eosinophilic inflammatory models, including aeroallergen challenge. Clinical studies similarly revealed significant enrichment in carbamylation of airway proteins recovered from atopic asthmatics versus healthy controls in response to segmental allergen challenge. Protein-bound homocitrulline is shown to be co-localized with EPO within human asthmatic airways. Moreover, pathophysiologically relevant levels of carbamylated protein either incubated with cultured human airway epithelial cells in vitro, or provided as an aerosolized exposure in non-sensitized mice, induced multiple asthma-associated phenotypes including induction of mucin, Th2 cytokines, IFNγ, TGFβ, and epithelial cell apoptosis. Studies with scavenger receptor-A1 null mice reveal reduced IL-13 generation following exposure to aerosolized carbamylated protein, but no changes in other asthma-related phenotypes. In summary, EPO-mediated protein carbamylation is promoted during allergen-induced asthma exacerbation, and can both modulate immune responses and trigger a cascade of many of the inflammatory signals present in asthma.
嗜酸性粒细胞促成哮喘发病机制的生化机制尚不清楚。在此,我们发现嗜酸性粒细胞过氧化物酶(EPO)是一种由活化的嗜酸性粒细胞释放的丰富颗粒蛋白,通过一种称为氨甲酰化的过程,对哮喘气道中的蛋白质进行氧化翻译后修饰(PTM),从而促成哮喘相关的典型表型。通过一系列研究,我们现在表明,EPO利用血浆中的拟卤化物硫氰酸盐(SCN)作为底物来催化蛋白质氨甲酰化,这可通过蛋白质赖氨酸残基向N-氨甲酰赖氨酸(高瓜氨酸)的PTM来监测,并且促成嗜酸性粒细胞活化的病理生理后果。使用EPO缺陷小鼠的研究证实,在嗜酸性粒细胞炎症模型(包括气源性变应原激发)中,EPO是蛋白质氨甲酰化的主要酶源。临床研究同样显示,与健康对照相比,在特应性哮喘患者对节段性变应原激发的反应中,从其气道中回收的气道蛋白的氨甲酰化显著富集。蛋白质结合的高瓜氨酸在人类哮喘气道中与EPO共定位。此外,在体外与培养的人气道上皮细胞孵育或在未致敏小鼠中以雾化暴露形式提供的病理生理相关水平的氨甲酰化蛋白,可诱导多种哮喘相关表型,包括粘蛋白、Th2细胞因子、IFNγ、TGFβ的诱导以及上皮细胞凋亡。对清道夫受体-A1基因敲除小鼠的研究显示,暴露于雾化的氨甲酰化蛋白后IL-13生成减少,但其他哮喘相关表型无变化。总之,在变应原诱导的哮喘加重过程中,EPO介导的蛋白质氨甲酰化会增强,并且既能调节免疫反应,又能触发哮喘中存在的许多炎症信号的级联反应。