Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, P.R.C.
Toxicol Mech Methods. 2004;15(1):29-32. doi: 10.1080/15376520490446383.
Abstract Metabolomic analysis is a technology which seeks to provide a comprehensive profile of all the metabolites present in a biological sample ( Fiehn 2002 ; Noguchi et al. 2003 ; Watkins et al. 2002 ). Metabolomics is not a new science, but emerging as an exciting application which can span the scope of biotechnology and medicine, providing metabolic profile and a complement to the genomic and proteomic data ( German et al. 2003 ). Studies have already begun to explore the effects of toxicological, pharmaceutical, nutritional, and environmental intervention and to build integrated databases of metabolite concentrations throughout biological systems, ranging from microbes to plants to human and research animal populations ( Bruskiewich et al. 2003 ; Bailey et al. 2003 ; Fiehn 2003 ; Novotna et al. 2003 ). This may provide a tool for discovering a novel pathway, or determining the relationship of these metabolite concentrations to disease, and the extent to which nutrition can modulate metabolite concentrations ( Weckwerth and Fiehn 2002 ). Metabolites are the products of enzymatic processes. Their levels can be regarded as the ultimate response of biological systems to genetic or environmental changes ( Fiehn 2002 ). While the amount of an enzyme protein in a biological system could be quantified by using specific antibodies or by measuring the mRNA responsible for their production, factors such as the availability of cofactors and coenzymes, feedback regulation, pH, compartmentalization, etc. could affect their activity, thus, in turn, affect the metabolite's (i.e., substrates and their enzymatic products) levels. There have been a number of different interpretations of "metabolites." In pharmacological and toxicological studies, metabolites could be considered as the enzymatic degradative products of drugs ( Nishikawa et al. 2003 ; Plumb et al. 2002 ; Reo 2002 ; Robosky et al. 2002 ; Slim et al. 2002 ). In other studies, metabolites could be referred to as amino acids ( Noguchi et al. 2003 ), keto acids ( Bailey et al. 2003 ), or lipids ( German et al. 2003 ), which are substrates and products of selected metabolic pathways. Noguchi et al. (2003) proposed using "subset" to indicate the type of metabolites to be studied. Thus, the amino acid subset, for example, would indicate the levels of all the amino acids in a sample and lipomic subset would indicate the levels of all metabolites involved in lipid metabolism. In biochemical, physiological, and toxicological studies, animal models are preferred. In fact, a large amount of information on metabolites balance has been accumulated for a number of pharmacological, toxicological, and pathological conditions ( Henry et al. 1985 ; Needleman et al. 1968 ; Tourtellotte et al. 1966 ; McDougal, Jr. et al. 1997 ; Yang et al. 1985 ; King et al. 1967 ; Lowry et al. 1983 ; Gupta et al. 2000 ; Gupta et al. 2001a ,b; Gupta and Dettbarn 2003). Only recently has attention been directed towards studying metabolites in cell culture. Cell culture, with intact membrane and cytoplasmic organelles that operate under well understood biochemical and molecular events, provides a simple model that is best used for studying the basic mechanisms of toxicological and pharmacological actions of xenobiotics. Other advantages of using cell culture are to lighten the heavy workload and complications involved in performing animal studies, as well as to reduce the use of animals, which is also advocated on the ground of good animal ethics. To correlate the results in vivo, the data need to be transformed taking into consideration the level of toxicant at the site of action.
摘要 代谢组学分析是一种旨在提供生物样本中所有代谢物综合特征图谱的技术(Fiehn 2002;Noguchi 等人,2003;Watkins 等人,2002)。代谢组学并不是一门新科学,而是作为一种令人兴奋的应用正在兴起,它可以涵盖生物技术和医学的范围,提供代谢特征图谱,并与基因组和蛋白质组数据互补(German 等人,2003)。已经有研究开始探索毒理学、药物学、营养学和环境干预的影响,并建立整个生物系统(从微生物到植物到人类和研究动物种群)代谢物浓度的综合数据库(Bruskiewich 等人,2003;Bailey 等人,2003;Fiehn 2003;Novotna 等人,2003)。这可能为发现新途径提供工具,或者确定这些代谢物浓度与疾病的关系,以及营养可以在多大程度上调节代谢物浓度(Weckwerth 和 Fiehn 2002)。代谢物是酶促过程的产物。它们的水平可以被视为生物系统对遗传或环境变化的最终反应(Fiehn 2002)。虽然生物系统中一种酶蛋白的数量可以通过使用特定的抗体或测量负责其产生的 mRNA 来定量,但诸如辅助因子和辅酶的可用性、反馈调节、pH 值、区室化等因素可能会影响其活性,从而反过来影响代谢物(即底物及其酶产物)的水平。“代谢物”有许多不同的解释。在药理学和毒理学研究中,代谢物可以被认为是药物的酶促降解产物(Nishikawa 等人,2003;Plumb 等人,2002;Reo 2002;Robosky 等人,2002;Slim 等人,2002)。在其他研究中,代谢物可以被称为氨基酸(Noguchi 等人,2003)、酮酸(Bailey 等人,2003)或脂质(German 等人,2003),它们是选定代谢途径的底物和产物。Noguchi 等人(2003)建议使用“子集”来表示要研究的代谢物类型。因此,例如,氨基酸子集将表示样本中所有氨基酸的水平,脂质子集将表示涉及脂质代谢的所有代谢物的水平。在生化、生理和毒理学研究中,动物模型是首选。事实上,已经积累了大量关于代谢物平衡的信息,用于许多药理学、毒理学和病理学条件(Henry 等人,1985;Needleman 等人,1968;Tourtellotte 等人,1966;McDougal, Jr. 等人,1997;Yang 等人,1985;King 等人,1967;Lowry 等人,1983;Gupta 等人,2000;Gupta 等人,2001a,b;Gupta 和 Dettbarn 2003)。最近才开始关注细胞培养中的代谢物研究。细胞培养具有完整的膜和细胞质细胞器,在已知的生化和分子事件下运作,提供了一个简单的模型,最适合用于研究外源性物质毒理学和药理学作用的基本机制。使用细胞培养的其他优点是减轻进行动物研究的繁重工作量和复杂性,并减少对动物的使用,这也符合良好动物伦理学的要求。为了将结果与体内相关联,需要考虑作用部位的毒物水平来转换数据。