Suppr超能文献

将水平基因转移和共同祖先结合起来描述进化,并将其与“共同设计”进行对比。

Integrating horizontal gene transfer and common descent to depict evolution and contrast it with "common design".

机构信息

Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA.

出版信息

J Eukaryot Microbiol. 2010 Jan-Feb;57(1):11-8. doi: 10.1111/j.1550-7408.2009.00458.x. Epub 2009 Dec 18.

Abstract

Horizontal gene transfer (HGT) and common descent interact in space and time. Because events of HGT co-occur with phylogenetic evolution, it is difficult to depict evolutionary patterns graphically. Tree-like representations of life's diversification are useful, but they ignore the significance of HGT in evolutionary history, particularly of unicellular organisms, ancestors of multicellular life. Here we integrate the reticulated-tree model, ring of life, symbiogenesis whole-organism model, and eliminative pattern pluralism to represent evolution. Using Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a bifunctional enzyme in the glycolytic pathway of amoeba, we illustrate how EhADH2 could be the product of both horizontally acquired features from ancestral prokaryotes (i.e. aldehyde dehydrogenase [ALDH] and alcohol dehydrogenase [ADH]), and subsequent functional integration of these enzymes into EhADH2, which is now inherited by amoeba via common descent. Natural selection has driven the evolution of EhADH2 active sites, which require specific amino acids (cysteine 252 in the ALDH domain; histidine 754 in the ADH domain), iron- and NAD(+) as cofactors, and the substrates acetyl-CoA for ALDH and acetaldehyde for ADH. Alternative views invoking "common design" (i.e. the non-naturalistic emergence of major taxa independent from ancestry) to explain the interaction between horizontal and vertical evolution are unfounded.

摘要

水平基因转移(HGT)和共同祖先在时间和空间上相互作用。由于 HGT 事件与系统发育进化同时发生,因此很难以图形方式描绘进化模式。生命多样化的树状表示形式很有用,但它们忽略了 HGT 在进化历史中的重要性,特别是在单细胞生物中,这些单细胞生物是多细胞生命的祖先。在这里,我们整合了网状树模型、生命之环、共生整体生物模型和消除模式多元论来表示进化。我们使用溶组织内阿米巴醇脱氢酶 2(EhADH2),即阿米巴糖酵解途径中的双功能酶,来说明 EhADH2 如何可能是来自祖先原核生物的水平获得特征(即醛脱氢酶[ALDH]和醇脱氢酶[ADH])的产物,以及随后这些酶在 EhADH2 中的功能整合,EhADH2 现在通过共同祖先遗传给阿米巴。自然选择驱动了 EhADH2 活性位点的进化,这些活性位点需要特定的氨基酸(ALDH 结构域中的半胱氨酸 252;ADH 结构域中的组氨酸 754)、铁和 NAD(+)作为辅因子,以及 ALDH 的乙酰辅酶 A 和 ADH 的乙醛作为底物。援引“共同设计”(即主要分类群的非自然出现独立于祖先)来解释水平和垂直进化之间相互作用的替代观点是没有根据的。

相似文献

1
Integrating horizontal gene transfer and common descent to depict evolution and contrast it with "common design".
J Eukaryot Microbiol. 2010 Jan-Feb;57(1):11-8. doi: 10.1111/j.1550-7408.2009.00458.x. Epub 2009 Dec 18.
10
Bioinformatics Structural and Phylogenetic Characterization of Alcohol Dehydrogenase 2 (EhADH2).
Bios. 2019 Oct;90(1):30-41. doi: 10.1893/0005-3155-90.1.30. Epub 2019 Oct 26.

引用本文的文献

1
Bioinformatics Structural and Phylogenetic Characterization of Alcohol Dehydrogenase 2 (EhADH2).
Bios. 2019 Oct;90(1):30-41. doi: 10.1893/0005-3155-90.1.30. Epub 2019 Oct 26.
2
A Call to Develop Course-Based Undergraduate Research Experiences (CUREs) for Nonmajors Courses.
CBE Life Sci Educ. 2017 Summer;16(2). doi: 10.1187/cbe.16-12-0352.
3
The Jackprot Simulation Couples Mutation Rate with Natural Selection to Illustrate How Protein Evolution Is Not Random.
Evolution (N Y). 2011 Sep;4(3):502-514. doi: 10.1007/s12052-011-0329-2. Epub 2011 Mar 24.
5
Galapagos III World Evolution Summit: why evolution matters.
Evolution (N Y). 2013;6. doi: 10.1186/1936-6434-6-28. Epub 2013 Sep 24.
6
Evidence of Taxa-, Clone-, and Kin-discrimination in Protists: Ecological and Evolutionary Implications.
Evol Ecol. 2014 Nov 1;28(6):1019-1029. doi: 10.1007/s10682-014-9721-z.
7
Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms.
Front Cell Infect Microbiol. 2012 Aug 21;2:110. doi: 10.3389/fcimb.2012.00110. eCollection 2012.
8
Discrimination, crypticity, and incipient taxa in entamoeba.
J Eukaryot Microbiol. 2012 Mar-Apr;59(2):105-10. doi: 10.1111/j.1550-7408.2011.00606.x. Epub 2012 Feb 2.
9
Introduction: why people do not accept evolution: using protistan diversity to promote evolution literacy.
J Eukaryot Microbiol. 2012 Mar-Apr;59(2):101-4. doi: 10.1111/j.1550-7408.2011.00604.x. Epub 2012 Jan 24.
10
Introduction: protistan biology, horizontal gene transfer, and common descent uncover faulty logic in intelligent design.
J Eukaryot Microbiol. 2010 Jan-Feb;57(1):1-2. doi: 10.1111/j.1550-7408.2009.00459.x. Epub 2009 Dec 18.

本文引用的文献

2
Evidence for an early prokaryotic endosymbiosis.
Nature. 2009 Aug 20;460(7258):967-71. doi: 10.1038/nature08183.
3
The role of hybridization in plant speciation.
Annu Rev Plant Biol. 2009;60:561-88. doi: 10.1146/annurev.arplant.043008.092039.
4
Molecular phylogeny: reconstructing the forest.
C R Biol. 2009 Feb-Mar;332(2-3):171-82. doi: 10.1016/j.crvi.2008.07.003. Epub 2008 Nov 29.
5
Role of horizontal gene transfer in the evolution of plant parasitism among nematodes.
Methods Mol Biol. 2009;532:517-35. doi: 10.1007/978-1-60327-853-9_30.
7
Genome acquisition in horizontal gene transfer: symbiogenesis and macromolecular sequence analysis.
Methods Mol Biol. 2009;532:181-91. doi: 10.1007/978-1-60327-853-9_10.
8
Epistemological impacts of horizontal gene transfer on classification in microbiology.
Methods Mol Biol. 2009;532:55-72. doi: 10.1007/978-1-60327-853-9_4.
10
Darwinian evolution in the light of genomics.
Nucleic Acids Res. 2009 Mar;37(4):1011-34. doi: 10.1093/nar/gkp089. Epub 2009 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验