Bioinformatics Program, University of Michigan, Ann Arbor, MI 48109, USA.
BMC Bioinformatics. 2009 Dec 18;10:433. doi: 10.1186/1471-2105-10-433.
The topology of a biological pathway provides clues as to how a pathway operates, but rationally using this topology information with observed gene expression data remains a challenge.
We introduce a new general-purpose analytic method called Mechanistic Bayesian Networks (MBNs) that allows for the integration of gene expression data and known constraints within a signal or regulatory pathway to predict new downstream pathway targets. The MBN framework is implemented in an open-source Bayesian network learning package, the Python Environment for Bayesian Learning (PEBL). We demonstrate how MBNs can be used by modeling the early steps of the sonic hedgehog pathway using gene expression data from different developmental stages and genetic backgrounds in mouse. Using the MBN approach we are able to automatically identify many of the known downstream targets of the hedgehog pathway such as Gas1 and Gli1, along with a short list of likely targets such as Mig12.
The MBN approach shown here can easily be extended to other pathways and data types to yield a more mechanistic framework for learning genetic regulatory models.
生物途径的拓扑结构提供了了解途径如何运作的线索,但合理地利用这种拓扑信息和观察到的基因表达数据仍然是一个挑战。
我们引入了一种新的通用分析方法,称为机制贝叶斯网络(MBNs),它允许将基因表达数据和信号或调节途径内的已知约束整合在一起,以预测新的下游途径靶标。MBN 框架在一个开源贝叶斯网络学习包,即 Python 贝叶斯学习环境(PEBL)中实现。我们通过使用来自不同发育阶段和遗传背景的小鼠的基因表达数据来模拟 sonic hedgehog 途径的早期步骤,展示了 MBN 如何被使用。使用 MBN 方法,我们能够自动识别 hedgehog 途径的许多已知下游靶标,如 Gas1 和 Gli1,以及一小部分可能的靶标,如 Mig12。
这里展示的 MBN 方法可以很容易地扩展到其他途径和数据类型,以产生更具机制性的学习遗传调控模型的框架。