Han Eunah, Kopf Sebastian H, Maloney Ashley E, Ai Xuyuan Ellen, Sigman Daniel M, Zhang Xinning
Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, USA.
Department of Geological Sciences, UCB 399, University of Colorado, Boulder, CO 80309, USA.
PNAS Nexus. 2025 Feb 25;4(3):pgaf061. doi: 10.1093/pnasnexus/pgaf061. eCollection 2025 Mar.
Biological fixation of dinitrogen (N), the primary natural source of new bioavailable nitrogen (N) on Earth, is catalyzed by the enzyme nitrogenase through a complex mechanism at its active site metal cofactor. How this reaction functions in cellular environments, including its rate-limiting step, and how enzyme structure affects functioning remain unclear. Here, we investigated cellular N fixation through its N isotope effect (ε), measured as the difference between the N/N ratios of diazotroph net new fixed N and N substrate. The value of ε underpins N cycle reconstructions and differs between diazotrophs using molybdenum-containing and molybdenum-free nitrogenases. By examining ε for strains with natural and mutated nitrogenases, we determined if ε reflects enzyme-scale isotope effects and, thus, N use efficiency. Distinct and relatively stable ε values for wild-type molybdenum- and vanadium-nitrogenase isoforms (2.5‰ and 5.8-6.6‰, respectively), despite changing cellular growth rate and electron availability, support ε as a proxy for isoform type among extant nitrogenases. Structural mutation of active site N access altered molybdenum-nitrogenase ε (3.0-6.8‰ for α-70VI mutant). Structure-function and isotopic modeling results indicated cellular N reduction is rate-limited by N diffusion inside nitrogenase due to highly efficient catalysis by the active site cofactor, exemplifying ε as a tool to probe N fixation mechanisms. Diffusion-constrained reactions could reflect structural tradeoffs that protect the oxygen-sensitive cofactor from oxygen inactivation. This suggests that nitrogenase function is optimized for modern oxygenated environments and that pre-Great Oxidative Event nitrogenases were less diffusion-limited and potentially exhibited larger ε values.
二氮(N)的生物固定是地球上新的生物可利用氮(N)的主要天然来源,由固氮酶在其活性位点金属辅因子处通过复杂机制催化。该反应在细胞环境中的作用方式,包括其限速步骤,以及酶结构如何影响其功能,目前仍不清楚。在这里,我们通过其氮同位素效应(ε)研究了细胞固氮作用,该效应通过固氮微生物净新固定氮与氮底物的N/N比之间的差异来衡量。ε值是氮循环重建的基础,并且在使用含钼和不含钼固氮酶的固氮微生物之间有所不同。通过检查具有天然和突变固氮酶的菌株的ε,我们确定ε是否反映了酶水平的同位素效应,从而反映了氮的利用效率。野生型钼和钒固氮酶亚型具有明显且相对稳定的ε值(分别为2.5‰和5.8 - 6.6‰),尽管细胞生长速率和电子可用性发生了变化,这支持ε作为现存固氮酶中同工型类型的替代指标。活性位点氮进入的结构突变改变了钼固氮酶的ε(α - 70VI突变体为3.0 - 6.8‰)。结构 - 功能和同位素建模结果表明,由于活性位点辅因子的高效催化,细胞内氮的还原受固氮酶内部氮扩散的限制,这例证了ε作为探究固氮机制的工具。扩散受限反应可能反映了保护对氧敏感的辅因子免受过氧化失活的结构权衡。这表明固氮酶的功能是针对现代氧化环境进行优化的,并且在大氧化事件之前的固氮酶受扩散限制较小,可能表现出更大的ε值。