Suppr超能文献

理解 N 与 FeMoco 结合的电子结构基础:系统的量子力学/分子力学研究。

Understanding the Electronic Structure Basis for N Binding to FeMoco: A Systematic Quantum Mechanics/Molecular Mechanics Investigation.

机构信息

College of Chemistry, Beijing Normal University, Beijing 100875, China.

Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany.

出版信息

Inorg Chem. 2023 Apr 10;62(14):5357-5375. doi: 10.1021/acs.inorgchem.2c03967. Epub 2023 Mar 29.

Abstract

The FeMo cofactor (FeMoco) of Mo nitrogenase is responsible for reducing dinitrogen to ammonia, but it requires the addition of 3-4 e/H pairs before N even binds. A binding site at the Fe2/Fe3/Fe6/Fe7 face of the cofactor has long been suggested based on mutation studies, with Fe2 or Fe6 nowadays being primarily discussed as possibilities. However, the nature of N binding to the cofactor is enigmatic as the metal ions are coordinatively saturated in the resting state with no obvious binding site. Furthermore, the cofactor consists of high-spin Fe(II)/Fe(III) ions (antiferromagnetically coupled but also mixed-valence delocalized), which are not known to bind N. This suggests that an Fe binding site with a different molecular and electronic structure than the resting state must be responsible for the experimentally known N binding in the state of FeMoco. We have systematically studied N binding to Fe2 and Fe6 sites of FeMoco at the broken-symmetry QM/MM level as a function of the redox-, spin-, and protonation state of the cofactor. The local and global electronic structure changes to the cofactor taking place during redox events, protonation, Fe-S cleavage, hydride formation, and N coordination are systematically analyzed. Localized orbital and quasi-restricted orbital analysis via diamagnetic substitution is used to get insights into the local single Fe ion electronic structure in various states of FeMoco. A few factors emerge as essential to N binding in the calculations: spin-pairing of and orbitals of the N-binding Fe ion, a coordination change at the N-binding Fe ion aided by a hemilabile protonated sulfur, and finally hydride ligation. The results show that N binding to , , and models is generally unfavorable, likely due to the high-energy cost of stabilizing the necessary spin-paired electronic structure of the N-binding Fe ion in a ligand environment that clearly favors high-spin states. The results for models of , however, suggest a feasible model for why N binding occurs experimentally in the state. models with two bridging hydrides between Fe2 and Fe6 show much more favorable N binding than other models. When two hydrides coordinate to the same Fe ion, an increased ligand-field splitting due to octahedral coordination at either Fe2 or Fe6 is found. This altered ligand field makes it easier for the Fe ion to acquire a spin-paired electronic structure with doubly occupied and orbitals that backbond to a terminal N ligand. Within this model for N binding, both Fe2 and Fe6 emerge as possible binding site scenarios. Due to steric effects involving the His195 residue, affecting both the N ligand and the terminal SH group, distinguishing between Fe2 and Fe6 is difficult; furthermore, the binding depends on the protonation state of His195.

摘要

固氮酶的 FeMo 辅因子(FeMoco)负责将氮气还原为氨,但在 N 结合之前,它需要额外添加 3-4 对 e/H。基于突变研究,长期以来一直认为在辅因子的 Fe2/Fe3/Fe6/Fe7 面上存在一个结合位点,现在主要讨论的是 Fe2 或 Fe6 的可能性。然而,由于金属离子在静止状态下配位饱和,没有明显的结合位点,因此 N 与辅因子结合的性质仍然是个谜。此外,辅因子由高自旋 Fe(II)/Fe(III) 离子(反铁磁耦合但也混合价离域)组成,这些离子已知不与 N 结合。这表明,与静止状态相比,必须有一种具有不同分子和电子结构的 Fe 结合位点负责实验中已知的 FeMoco 在 状态下的 N 结合。我们已经在 broken-symmetry QM/MM 水平上系统地研究了 N 与 FeMoco 的 Fe2 和 Fe6 位点的结合,作为辅因子氧化还原态、自旋态和质子化状态的函数。系统分析了在氧化还原事件、质子化、Fe-S 断裂、氢化物形成和 N 配位过程中发生的局部和全局电子结构变化。通过反磁性取代进行局域轨道和准受限轨道分析,以深入了解各种 FeMoco 状态下单个 Fe 离子的局部电子结构。出现了几个因素,这些因素对于计算中的 N 结合至关重要:N 结合 Fe 离子的 和 轨道的自旋配对、由半可逆质子化硫辅助的 N 结合 Fe 离子的配位变化,以及最后是氢化物的配位。结果表明,N 与 、 和 模型的结合通常是不利的,这可能是由于在配体环境中稳定 N 结合 Fe 离子所需的自旋配对电子结构的能量成本较高,而配体环境明显有利于高自旋态。然而, 模型的结果表明,为什么实验中 N 结合会发生在 状态是有可行的模型的。具有 Fe2 和 Fe6 之间两个桥接氢化物的 模型显示出比其他模型更有利的 N 结合。当两个氢化物与同一 Fe 离子配位时,在 Fe2 或 Fe6 处发现由于八面体配位而导致的配体场分裂增加。这种改变的配体场使 Fe 离子更容易获得具有双重占据的 和 轨道的自旋配对电子结构,该轨道backbond 到末端 N 配体。在这种 N 结合模型中,Fe2 和 Fe6 都有可能成为结合位点。由于涉及 His195 残基的空间位阻效应,影响 N 配体和末端 SH 基团,因此很难区分 Fe2 和 Fe6;此外,结合取决于 His195 的质子化状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db6/10091479/b71d3df0a488/ic2c03967_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验