Suppr超能文献

化学和机械刺激下骨髓间充质干细胞向血管内皮细胞的定向分化。

Endothelium oriented differentiation of bone marrow mesenchymal stem cells under chemical and mechanical stimulations.

机构信息

School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics, No 37 Xueyuan Road, Beijing 100191, China.

出版信息

J Biomech. 2010 Apr 19;43(6):1176-81. doi: 10.1016/j.jbiomech.2009.11.030. Epub 2009 Dec 22.

Abstract

Bone marrow mesenchymal stem cells (MSCs) have multi-differentiation capability. Their endothelial cell (EC) oriented differentiation is the key to vasculogenesis, in which both mechanical and chemical stimulations play important roles. Most previous studies reported individual effects of VEGF or fluid shear stress (SS), when MSCs were subjected to shear stress of 10-15 dyn/cm(2) over 24hr. In this paper, we investigated responses of MSCs from young Sprague Dawley rats to shear stress, VEGF and the combination of the two stimuli. Our study showed that the combined stimulation of shear stress and VEGF resulted in more profound EC oriented differentiation of MSCs in comparison to any individual stimulation. Furthermore, we subjected MSCs to prolonged period of fluid shear stimulation, i.e. 48 hr rather than 24hr, and increased the magnitude of the shear stress from 10 dyn/cm(2) to 15, 20 and 25 dyn/cm(2). We found that without VEGF, the endothelium oriented differentiation of MSCs that was seen following 24hr of shear stimulation was largely abolished if we extended the shear stimulation to 48hr. A similar sharp decrease in MSC differentiation was also observed when the magnitude of the shear stress was increased from 10-15 dyn/cm(2) to 20-25 dyn/cm(2) in 24hr shear stimulation studies. However, with combined VEGF and fluid shear stimulation, most of the endothelial differentiation was retained following an extended period, i.e. at 48 hr, of shear stimulation. Our study demonstrates that chemical and mechanical stimulations work together in determining MSC differentiation dynamics.

摘要

骨髓间充质干细胞(MSCs)具有多向分化能力。其向血管内皮细胞(EC)的定向分化是血管生成的关键,其中机械和化学刺激都起着重要作用。大多数先前的研究报告了 VEGF 或流体切应力(SS)的单一作用,当 MSCs 受到 10-15 dyn/cm(2)的切应力作用 24 小时时。在本文中,我们研究了来自年轻 Sprague Dawley 大鼠的 MSCs 对切应力、VEGF 以及两者刺激组合的反应。我们的研究表明,与任何单一刺激相比,切应力和 VEGF 的联合刺激导致 MSCs 向 EC 定向分化更为明显。此外,我们对 MSCs 进行了更长时间的流体切应力刺激,即 48 小时而不是 24 小时,并将切应力的幅度从 10 dyn/cm(2)增加到 15、20 和 25 dyn/cm(2)。我们发现,如果将切应力刺激延长至 48 小时,没有 VEGF 的情况下,24 小时切应力刺激后观察到的 MSCs 向血管内皮细胞的定向分化会大大减少。在 24 小时切应力刺激研究中,当切应力幅度从 10-15 dyn/cm(2)增加到 20-25 dyn/cm(2)时,也观察到 MSC 分化的类似急剧下降。然而,在 VEGF 和流体切应力联合刺激下,在延长的切应力刺激期间(即 48 小时),大部分内皮分化得以保留。我们的研究表明,化学和机械刺激共同决定了 MSCs 分化的动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验