Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
Clin Chem. 2010 Feb;56(2):291-305. doi: 10.1373/clinchem.2009.138420. Epub 2009 Dec 18.
Multiple reaction monitoring mass spectrometry (MRM-MS) of peptides with stable isotope-labeled internal standards (SISs) is increasingly being used to develop quantitative assays for proteins in complex biological matrices. These assays can be highly precise and quantitative, but the frequent occurrence of interferences requires that MRM-MS data be manually reviewed, a time-intensive process subject to human error. We developed an algorithm that identifies inaccurate transition data based on the presence of interfering signal or inconsistent recovery among replicate samples.
The algorithm objectively evaluates MRM-MS data with 2 orthogonal approaches. First, it compares the relative product ion intensities of the analyte peptide to those of the SIS peptide and uses a t-test to determine if they are significantly different. A CV is then calculated from the ratio of the analyte peak area to the SIS peak area from the sample replicates.
The algorithm identified problematic transitions and achieved accuracies of 94%-100%, with a sensitivity and specificity of 83%-100% for correct identification of errant transitions. The algorithm was robust when challenged with multiple types of interferences and problematic transitions.
This algorithm for automated detection of inaccurate and imprecise transitions (AuDIT) in MRM-MS data reduces the time required for manual and subjective inspection of data, improves the overall accuracy of data analysis, and is easily implemented into the standard data-analysis work flow. AuDIT currently works with results exported from MRM-MS data-processing software packages and may be implemented as an analysis tool within such software.
采用稳定同位素标记内标(SIS)的肽段多反应监测质谱(MRM-MS)技术,越来越多地用于开发复杂生物基质中蛋白质的定量检测方法。这些检测方法可以高度精确和定量,但频繁出现的干扰需要人工审查 MRM-MS 数据,这是一个耗费时间且容易出错的过程。我们开发了一种算法,该算法根据干扰信号的存在或重复样本中回收的不一致性,识别不准确的转换数据。
该算法采用 2 种正交方法客观地评估 MRM-MS 数据。首先,它比较分析物肽的相对产物离子强度与 SIS 肽的相对产物离子强度,并使用 t 检验来确定它们是否存在显著差异。然后,从样品重复中计算分析物峰面积与 SIS 峰面积的比值,得到 CV。
该算法识别出有问题的转换,并实现了 94%-100%的准确度,对错误转换的正确识别具有 83%-100%的灵敏度和特异性。该算法在受到多种类型干扰和有问题的转换的挑战时具有鲁棒性。
这种用于自动检测 MRM-MS 数据中不准确和不精确转换的算法(AuDIT)减少了手动和主观检查数据所需的时间,提高了数据分析的整体准确性,并易于集成到标准数据分析工作流程中。AuDIT 目前可与从 MRM-MS 数据处理软件包导出的结果一起使用,并可作为此类软件中的分析工具来实现。