Suppr超能文献

在生理胁迫和结瘤过程中,大豆慢生根瘤菌海藻糖生物合成和代谢基因的功能作用。

Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation.

机构信息

Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, USA.

出版信息

Appl Environ Microbiol. 2010 Feb;76(4):1071-81. doi: 10.1128/AEM.02483-09. Epub 2009 Dec 18.

Abstract

Trehalose, a disaccharide accumulated by many microorganisms, acts as a protectant during periods of physiological stress, such as salinity and desiccation. Previous studies reported that the trehalose biosynthetic genes (otsA, treS, and treY) in Bradyrhizobium japonicum were induced by salinity and desiccation stresses. Functional mutational analyses indicated that disruption of otsA decreased trehalose accumulation in cells and that an otsA treY double mutant accumulated an extremely low level of trehalose. In contrast, trehalose accumulated to a greater extent in a treS mutant, and maltose levels decreased relative to that seen with the wild-type strain. Mutant strains lacking the OtsA pathway, including the single, double, and triple DeltaotsA, DeltaotsA DeltatreS and DeltaotsA DeltatreY, and DeltaotsA DeltatreS DeltatreY mutants, were inhibited for growth on 60 mM NaCl. While mutants lacking functional OtsAB and TreYZ pathways failed to grow on complex medium containing 60 mM NaCl, there was no difference in the viability of the double mutant strain when cells were grown under conditions of desiccation stress. In contrast, mutants lacking a functional TreS pathway were less tolerant of desiccation stress than the wild-type strain. Soybean plants inoculated with mutants lacking the OtsAB and TreYZ pathways produced fewer mature nodules and a greater number of immature nodules relative to those produced by the wild-type strain. Taken together, results of these studies indicate that stress-induced trehalose biosynthesis in B. japonicum is due mainly to the OtsAB pathway and that the TreS pathway is likely involved in the degradation of trehalose to maltose. Trehalose accumulation in B. japonicum enhances survival under conditions of salinity stress and plays a role in the development of symbiotic nitrogen-fixing root nodules on soybean plants.

摘要

海藻糖是许多微生物积累的一种二糖,在盐度和干旱等生理应激期间充当保护剂。先前的研究报告称,日本根瘤菌中的海藻糖生物合成基因(otsA、treS 和 treY)受盐度和干旱胁迫诱导。功能突变分析表明,otsA 的破坏会减少细胞中海藻糖的积累,而 otsAtreY 双突变体则积累极低水平的海藻糖。相比之下,treS 突变体中海藻糖积累更多,而麦芽糖水平相对于野生型菌株降低。缺乏 OtsA 途径的突变株,包括单、双和三 DeltaotsA、DeltaotsA DeltatreS 和 DeltaotsA DeltatreY 以及 DeltaotsA DeltatreS DeltatreY 突变株,在 60mM NaCl 上的生长受到抑制。虽然缺乏功能性 OtsAB 和 TreYZ 途径的突变体无法在含有 60mM NaCl 的复杂培养基上生长,但在干旱胁迫条件下,双突变体菌株的活力没有差异。相比之下,缺乏功能性 TreS 途径的突变体比野生型菌株对干旱胁迫的耐受性差。与野生型菌株相比,接种缺乏 OtsAB 和 TreYZ 途径的突变体的大豆植物产生的成熟根瘤较少,未成熟根瘤较多。综上所述,这些研究的结果表明,日本根瘤菌中海藻糖的应激诱导合成主要归因于 OtsAB 途径,而 TreS 途径可能参与海藻糖向麦芽糖的降解。日本根瘤菌中海藻糖的积累增强了在盐度胁迫条件下的生存能力,并在大豆植物上共生固氮根瘤的发育中发挥作用。

相似文献

1
Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation.
Appl Environ Microbiol. 2010 Feb;76(4):1071-81. doi: 10.1128/AEM.02483-09. Epub 2009 Dec 18.
3
Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance.
Appl Environ Microbiol. 2007 Jun;73(12):3984-92. doi: 10.1128/AEM.00412-07. Epub 2007 Apr 20.
4
Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress.
J Bacteriol. 2007 Oct;189(19):6751-62. doi: 10.1128/JB.00533-07. Epub 2007 Jul 27.
5
Trehalose Biosynthesis Gene Protects against Stress in the Initial Infection Stage of -Bean Bug Symbiosis.
Microbiol Spectr. 2023 Mar 28;11(2):e0351022. doi: 10.1128/spectrum.03510-22.
6
Effects of rehydration on physiological and transcriptional responses of a water-stressed rhizobium.
J Microbiol. 2022 Jan;60(1):31-46. doi: 10.1007/s12275-022-1325-7. Epub 2021 Nov 26.
8
Trehalose Synthesis Contributes to Osmotic Stress Tolerance and Virulence of the Bacterial Wilt Pathogen .
Mol Plant Microbe Interact. 2020 Mar;33(3):462-473. doi: 10.1094/MPMI-08-19-0218-R. Epub 2020 Jan 9.

引用本文的文献

2
Genomic insights into novel predatory myxobacteria isolated from human feces.
Microbiol Spectr. 2025 Jul;13(7):e0214724. doi: 10.1128/spectrum.02147-24. Epub 2025 May 22.
3
Synergistic co-metabolism enhancing the crude oil degradation by DR1 and its metabolic potential.
Microbiol Spectr. 2025 Jul;13(7):e0302324. doi: 10.1128/spectrum.03023-24. Epub 2025 May 21.
5
The Type IV Secretion System (T4SS) Mediates Symbiosis between sp. SUTN9-2 and Legumes.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0004023. doi: 10.1128/aem.00040-23. Epub 2023 May 31.
6
Study of thermotolerant mechanism of under high temperature stress based on the transcriptome sequencing.
Mycoscience. 2021 Mar 20;62(2):95-105. doi: 10.47371/mycosci.2020.11.006. eCollection 2021.
8
Trehalose Biosynthesis Gene Protects against Stress in the Initial Infection Stage of -Bean Bug Symbiosis.
Microbiol Spectr. 2023 Mar 28;11(2):e0351022. doi: 10.1128/spectrum.03510-22.
9
Genome of Paspalum vaginatum and the role of trehalose mediated autophagy in increasing maize biomass.
Nat Commun. 2022 Dec 13;13(1):7731. doi: 10.1038/s41467-022-35507-8.
10
Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism.
ISME J. 2022 Apr;16(4):1074-1085. doi: 10.1038/s41396-021-01136-0. Epub 2021 Nov 29.

本文引用的文献

1
2
The PhyR-sigma(EcfG) signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum.
Mol Microbiol. 2009 Jul;73(2):291-305. doi: 10.1111/j.1365-2958.2009.06769.x. Epub 2009 Jun 23.
5
An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum.
Mol Plant Microbe Interact. 2007 Oct;20(10):1298-307. doi: 10.1094/MPMI-20-10-1298.
6
Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress.
J Bacteriol. 2007 Oct;189(19):6751-62. doi: 10.1128/JB.00533-07. Epub 2007 Jul 27.
7
Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance.
Appl Environ Microbiol. 2007 Jun;73(12):3984-92. doi: 10.1128/AEM.00412-07. Epub 2007 Apr 20.
8
Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature.
Appl Environ Microbiol. 2007 Jun;73(11):3451-9. doi: 10.1128/AEM.02991-06. Epub 2007 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验