Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
Appl Environ Microbiol. 2010 Feb;76(4):1251-60. doi: 10.1128/AEM.01687-09. Epub 2009 Dec 18.
By combining cellulase production, cellulose hydrolysis, and sugar fermentation into a single step, consolidated bioprocessing (CBP) represents a promising technology for biofuel production. Here we report engineering of Saccharomyces cerevisiae strains displaying a series of uni-, bi-, and trifunctional minicellulosomes. These minicellulosomes consist of (i) a miniscaffoldin containing a cellulose-binding domain and three cohesin modules, which was tethered to the cell surface through the yeast a-agglutinin adhesion receptor, and (ii) up to three types of cellulases, an endoglucanase, a cellobiohydrolase, and a beta-glucosidase, each bearing a C-terminal dockerin. Cell surface assembly of the minicellulosomes was dependent on expression of the miniscaffoldin, indicating that formation of the complex was dictated by the high-affinity interactions between cohesins and dockerins. Compared to the unifunctional and bifunctional minicellulosomes, the quaternary trifunctional complexes showed enhanced enzyme-enzyme synergy and enzyme proximity synergy. More importantly, surface display of the trifunctional minicellulosomes gave yeast cells the ability to simultaneously break down and ferment phosphoric acid-swollen cellulose to ethanol with a titer of approximately 1.8 g/liter. To our knowledge, this is the first report of a recombinant yeast strain capable of producing cell-associated trifunctional minicellulosomes. The strain reported here represents a useful engineering platform for developing CBP-enabling microorganisms and elucidating principles of cellulosome construction and mode of action.
通过将纤维素酶生产、纤维素水解和糖发酵整合到一个步骤中,巩固生物加工(CBP)代表了生物燃料生产的一种很有前途的技术。在这里,我们报告了一系列单功能、双功能和三功能微纤维体展示的酿酒酵母菌株的工程改造。这些微纤维体由(i)一个含有纤维素结合域和三个粘着模块的微型支架组成,通过酵母α-凝聚素粘附受体将其连接到细胞表面,(ii)多达三种纤维素酶,内切葡聚糖酶、纤维二糖水解酶和β-葡萄糖苷酶,每个都带有一个 C 端的 dockerin。微纤维体的细胞表面组装依赖于微型支架的表达,这表明该复合物的形成取决于粘着蛋白和 dockerin 之间的高亲和力相互作用。与单功能和双功能微纤维体相比,四元的三功能复合物表现出增强的酶-酶协同作用和酶接近协同作用。更重要的是,三功能微纤维体的表面展示使酵母细胞能够同时将磷酸膨胀纤维素分解并发酵成乙醇,产率约为 1.8 克/升。据我们所知,这是第一个报道能够产生细胞相关的三功能微纤维体的重组酵母菌株的报告。这里报道的菌株代表了开发 CBP 使能微生物和阐明纤维体构建和作用模式的有用工程平台。