Suppr超能文献

酵母表面展示三联体微细胞体用于纤维素的同步糖化和发酵生产乙醇。

Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol.

机构信息

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.

出版信息

Appl Environ Microbiol. 2010 Feb;76(4):1251-60. doi: 10.1128/AEM.01687-09. Epub 2009 Dec 18.

Abstract

By combining cellulase production, cellulose hydrolysis, and sugar fermentation into a single step, consolidated bioprocessing (CBP) represents a promising technology for biofuel production. Here we report engineering of Saccharomyces cerevisiae strains displaying a series of uni-, bi-, and trifunctional minicellulosomes. These minicellulosomes consist of (i) a miniscaffoldin containing a cellulose-binding domain and three cohesin modules, which was tethered to the cell surface through the yeast a-agglutinin adhesion receptor, and (ii) up to three types of cellulases, an endoglucanase, a cellobiohydrolase, and a beta-glucosidase, each bearing a C-terminal dockerin. Cell surface assembly of the minicellulosomes was dependent on expression of the miniscaffoldin, indicating that formation of the complex was dictated by the high-affinity interactions between cohesins and dockerins. Compared to the unifunctional and bifunctional minicellulosomes, the quaternary trifunctional complexes showed enhanced enzyme-enzyme synergy and enzyme proximity synergy. More importantly, surface display of the trifunctional minicellulosomes gave yeast cells the ability to simultaneously break down and ferment phosphoric acid-swollen cellulose to ethanol with a titer of approximately 1.8 g/liter. To our knowledge, this is the first report of a recombinant yeast strain capable of producing cell-associated trifunctional minicellulosomes. The strain reported here represents a useful engineering platform for developing CBP-enabling microorganisms and elucidating principles of cellulosome construction and mode of action.

摘要

通过将纤维素酶生产、纤维素水解和糖发酵整合到一个步骤中,巩固生物加工(CBP)代表了生物燃料生产的一种很有前途的技术。在这里,我们报告了一系列单功能、双功能和三功能微纤维体展示的酿酒酵母菌株的工程改造。这些微纤维体由(i)一个含有纤维素结合域和三个粘着模块的微型支架组成,通过酵母α-凝聚素粘附受体将其连接到细胞表面,(ii)多达三种纤维素酶,内切葡聚糖酶、纤维二糖水解酶和β-葡萄糖苷酶,每个都带有一个 C 端的 dockerin。微纤维体的细胞表面组装依赖于微型支架的表达,这表明该复合物的形成取决于粘着蛋白和 dockerin 之间的高亲和力相互作用。与单功能和双功能微纤维体相比,四元的三功能复合物表现出增强的酶-酶协同作用和酶接近协同作用。更重要的是,三功能微纤维体的表面展示使酵母细胞能够同时将磷酸膨胀纤维素分解并发酵成乙醇,产率约为 1.8 克/升。据我们所知,这是第一个报道能够产生细胞相关的三功能微纤维体的重组酵母菌株的报告。这里报道的菌株代表了开发 CBP 使能微生物和阐明纤维体构建和作用模式的有用工程平台。

相似文献

1
Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol.
Appl Environ Microbiol. 2010 Feb;76(4):1251-60. doi: 10.1128/AEM.01687-09. Epub 2009 Dec 18.
2
Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production.
Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13260-5. doi: 10.1073/pnas.1209856109. Epub 2012 Aug 1.
4
Engineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2014 Nov;80(21):6677-84. doi: 10.1128/AEM.02070-14. Epub 2014 Aug 22.
5
Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome.
Appl Environ Microbiol. 2012 Jun;78(11):3837-45. doi: 10.1128/AEM.07679-11. Epub 2012 Mar 23.
6
Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production.
Appl Environ Microbiol. 2009 Oct;75(19):6087-93. doi: 10.1128/AEM.01538-09. Epub 2009 Aug 14.

引用本文的文献

1
Single-cell analysis of yeast surface display for designer cellulosome applications using a fluorescent protein complex.
Microbiol Spectr. 2025 Sep 2;13(9):e0075025. doi: 10.1128/spectrum.00750-25. Epub 2025 Aug 12.
3
An accessory enzymatic system of cellulase for simultaneous saccharification and co-fermentation.
Bioresour Bioprocess. 2022 Sep 19;9(1):101. doi: 10.1186/s40643-022-00585-5.
4
5
Current challenges in designer cellulosome engineering.
Appl Microbiol Biotechnol. 2023 May;107(9):2755-2770. doi: 10.1007/s00253-023-12474-8. Epub 2023 Mar 21.
6
cell surface display technology: Strategies for improvement and applications.
Front Bioeng Biotechnol. 2022 Dec 7;10:1056804. doi: 10.3389/fbioe.2022.1056804. eCollection 2022.
7
Yeast Surface Display System: Strategies for Improvement and Biotechnological Applications.
Front Bioeng Biotechnol. 2022 Jan 10;9:794742. doi: 10.3389/fbioe.2021.794742. eCollection 2021.
9
Consolidated Bioprocessing: Synthetic Biology Routes to Fuels and Fine Chemicals.
Microorganisms. 2021 May 18;9(5):1079. doi: 10.3390/microorganisms9051079.
10
Cell-surface engineering of yeasts for whole-cell biocatalysts.
Bioprocess Biosyst Eng. 2021 Jun;44(6):1003-1019. doi: 10.1007/s00449-020-02484-5. Epub 2021 Jan 3.

本文引用的文献

1
Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production.
Appl Environ Microbiol. 2009 Oct;75(19):6087-93. doi: 10.1128/AEM.01538-09. Epub 2009 Aug 14.
2
Protein engineering in designing tailored enzymes and microorganisms for biofuels production.
Curr Opin Biotechnol. 2009 Aug;20(4):412-9. doi: 10.1016/j.copbio.2009.07.001. Epub 2009 Aug 5.
3
Molecular engineering of the cellulosome complex for affinity and bioenergy applications.
Biotechnol Lett. 2009 Apr;31(4):465-76. doi: 10.1007/s10529-008-9899-7. Epub 2008 Dec 31.
4
DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways.
Nucleic Acids Res. 2009 Feb;37(2):e16. doi: 10.1093/nar/gkn991. Epub 2008 Dec 12.
5
Genomics of cellulosic biofuels.
Nature. 2008 Aug 14;454(7206):841-5. doi: 10.1038/nature07190.
6
Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity.
J Biotechnol. 2008 Jul 31;135(4):351-7. doi: 10.1016/j.jbiotec.2008.05.003. Epub 2008 May 16.
7
Rapid identification of CD4+ T-cell epitopes using yeast displaying pathogen-derived peptide library.
J Immunol Methods. 2008 Jul 20;336(1):37-44. doi: 10.1016/j.jim.2008.03.008. Epub 2008 Apr 14.
8
How biotech can transform biofuels.
Nat Biotechnol. 2008 Feb;26(2):169-72. doi: 10.1038/nbt0208-169.
9
Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers.
Ann N Y Acad Sci. 2008 Mar;1125:267-79. doi: 10.1196/annals.1419.002. Epub 2007 Dec 20.
10
Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae.
Adv Biochem Eng Biotechnol. 2007;108:205-35. doi: 10.1007/10_2007_061.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验