Suppr超能文献

通过展示五功能微型纤维小体的工程酵母联合体提高纤维素乙醇产量。

Improving cellulosic ethanol production by an engineered yeast consortium displaying a pentafunctional mini-cellulosome.

作者信息

Song Xiaofei, Zhang Jianze, Fu Siyu, Liu Ziyi, Chen Yan, Zhu Tingheng

机构信息

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, China.

出版信息

FEMS Yeast Res. 2025 Jan 30;25. doi: 10.1093/femsyr/foaf022.

Abstract

As a traditional ethanol-producing microorganism, Saccharomyces cerevisiae is an ideal host for consolidated bioprocessing. However, when overloaded cellulase genes are expressed in yeast, the metabolic burden on cells may greatly affect cell growth and cellulosic ethanol production. In this study, we developed a yeast consortium system that secretes and assembles five types of cellulases on the yeast cell surface to improve cellulosic ethanol production. This system involves one display strain, which provides the scaffoldin on the surface and several secretion strains that secrete each cellulase. The secreted dockerin-containing enzymes, cellobiohydrolase (CBH), endoglucanase (EG), β-glucosidase (BGL), cellobiose dehydrogenase (CDH), and lytic polysaccharide monooxygenase (LPMO), were randomly assembled to the scaffoldin to generate a pentafunctional mini-cellulosome via cohesion-dockerin interactions. The developed system relieved the metabolic burden placed on the engineered single yeast strain and leveraged the innate metabolic potential of each host. In addition, the enzymes in the consortium acted synergistically and efficiently boosted cellulose degradation and ethanol production. When compared with the conventional system, this consortium system increased the ethanol titers from 2.66 to 4.11 g/l with phosphoric acid swollen cellulose (PASC) as the substrate, an improvement of 55%. With Avicel as the substrate, ethanol titers increased from 1.57 to 3.24 g/l, representing an enhancement of 106%.

摘要

作为一种传统的乙醇生产微生物,酿酒酵母是同步糖化发酵的理想宿主。然而,当过量的纤维素酶基因在酵母中表达时,细胞的代谢负担可能会极大地影响细胞生长和纤维素乙醇的生产。在本研究中,我们开发了一种酵母共生体系,该体系在酵母细胞表面分泌并组装五种纤维素酶,以提高纤维素乙醇的产量。该体系包括一个展示菌株,其在表面提供脚手架蛋白,以及几个分泌每种纤维素酶的分泌菌株。分泌的含dockerin的酶,即纤维二糖水解酶(CBH)、内切葡聚糖酶(EG)、β-葡萄糖苷酶(BGL)、纤维二糖脱氢酶(CDH)和裂解多糖单加氧酶(LPMO),通过黏附素-dockerin相互作用随机组装到脚手架蛋白上,形成一个五功能的微型纤维小体。所开发的体系减轻了工程单酵母菌株的代谢负担,并利用了每个宿主固有的代谢潜力。此外,共生体系中的酶协同作用,有效地促进了纤维素的降解和乙醇的生产。与传统体系相比,以磷酸膨胀纤维素(PASC)为底物时,该共生体系的乙醇产量从2.66 g/l提高到4.11 g/l,提高了55%。以微晶纤维素为底物时,乙醇产量从1.57 g/l提高到3.24 g/l,提高了106%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3955/12108760/ec936229075d/foaf022fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验