Chair for Applied Physics and Center for NanoScience, Ludwigs-Maximilians-Universität Munich, Amalienstrasse 54, 80799 Munich, Germany.
Nat Nanotechnol. 2010 Feb;5(2):154-9. doi: 10.1038/nnano.2009.377. Epub 2009 Dec 20.
The ability to control the interaction of polyelectrolytes, such as DNA or proteins, with charged surfaces is of pivotal importance for a multitude of biotechnological applications. Previously, we measured the desorption forces of single polymers on charged surfaces using an atomic force microscope. Here, we show that the adhesion of DNA on gold electrodes modified with self-assembled monolayers can be biased by the composition of the monolayer and externally controlled by means of the electrode potential. Positive potentials induced DNA adsorption onto OH-terminated electrodes with adhesion forces up to 25 pN (at +0.5 V versus Ag/AgCl), whereas negative potentials suppressed DNA adsorption. The measured contributions of the DNA backbone phosphate charges and the doubly charged terminal phosphate on adsorption agreed with a model based on the Gouy-Chapman theory. Experiments on an NH(2)-terminated electrode revealed a similar force modulation range of the coulomb component of the desorption force. These findings are important for the development of new DNA-based biochips or supramolecular structures.
控制聚电解质(如 DNA 或蛋白质)与带电表面相互作用的能力对于众多生物技术应用至关重要。 此前,我们使用原子力显微镜测量了单个聚合物在带电表面上的解吸力。 在这里,我们表明,通过自组装单分子层修饰的金电极上的 DNA 粘附可以通过单层的组成来偏置,并通过电极电势进行外部控制。 正电势将 DNA 吸附到 OH 终止电极上,粘附力高达 25 pN(相对于 Ag/AgCl 为+0.5 V),而负电势则抑制 DNA 吸附。 吸附过程中 DNA 骨架磷酸盐电荷和双电荷末端磷酸盐的测量贡献与基于 Gouy-Chapman 理论的模型一致。 在 NH 2 终止电极上进行的实验揭示了解吸力的库仑分量的类似的力调制范围。 这些发现对于开发新的基于 DNA 的生物芯片或超分子结构非常重要。