Suppr超能文献

基于 DNA 折纸术的形状标识符用于单分子纳米机械基因分型。

DNA origami-based shape IDs for single-molecule nanomechanical genotyping.

机构信息

Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, PO Box 800-204, Shanghai 201800, China.

Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China.

出版信息

Nat Commun. 2017 Apr 6;8:14738. doi: 10.1038/ncomms14738.

Abstract

Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ∼10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.

摘要

DNA 序列的变异极大地影响了我们患上疾病以及对病原体和药物做出反应的方式。原子力显微镜(AFM)为基因分析提供了一种具有纳米级分辨率的纳米机械成像方法。然而,与具有波长特异性荧光团的荧光成像不同,缺乏形状特异性标签在很大程度上阻碍了 AFM 成像的广泛应用。在这里,我们报告了一组形状不同、高度杂交的自组装 DNA 折纸纳米结构的开发,这些结构作为单核苷酸多态性放大纳米力学成像的形状 ID。使用这些折纸形状 ID,我们直接对人类基因组 DNA 的单分子进行超高分辨率(约 10nm)和多重分析的基因分型。此外,我们还确定了来自汉族人群样本中的三种与疾病相关的长程单倍型。即使对于标记效率低的样本,单分子分析也可以实现稳健的单倍型分析。我们预计这种基于通用形状 ID 的纳米力学方法在单分子水平的遗传分析中具有巨大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b62/5384221/a01f18f2474d/ncomms14738-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验