Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, PO Box 800-204, Shanghai 201800, China.
Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China.
Nat Commun. 2017 Apr 6;8:14738. doi: 10.1038/ncomms14738.
Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ∼10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.
DNA 序列的变异极大地影响了我们患上疾病以及对病原体和药物做出反应的方式。原子力显微镜(AFM)为基因分析提供了一种具有纳米级分辨率的纳米机械成像方法。然而,与具有波长特异性荧光团的荧光成像不同,缺乏形状特异性标签在很大程度上阻碍了 AFM 成像的广泛应用。在这里,我们报告了一组形状不同、高度杂交的自组装 DNA 折纸纳米结构的开发,这些结构作为单核苷酸多态性放大纳米力学成像的形状 ID。使用这些折纸形状 ID,我们直接对人类基因组 DNA 的单分子进行超高分辨率(约 10nm)和多重分析的基因分型。此外,我们还确定了来自汉族人群样本中的三种与疾病相关的长程单倍型。即使对于标记效率低的样本,单分子分析也可以实现稳健的单倍型分析。我们预计这种基于通用形状 ID 的纳米力学方法在单分子水平的遗传分析中具有巨大的潜力。