Suppr超能文献

从细胞角度来看:探索宏观和微流控培养中细胞基线的差异。

From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures.

机构信息

Department of Biomedical Engineering, University of Wisconsin - Madison, WI, USA.

出版信息

Integr Biol (Camb). 2009 Feb;1(2):182-95. doi: 10.1039/b814565b. Epub 2009 Jan 8.

Abstract

Microfluidic devices for cell culture based assays provide new types of engineered microenvironments and new methods for controlling and quantifying cellular responses to these microenvironments. However, without an understanding of the effects of the microenvironments present in microdevices from a cellular perspective, it will be challenging to integrate work done in microdevices with biological data obtained via traditional methods. With the adaptation and validation of In Cell Westerns (ICWs) and in situ analysis techniques to microfluidic devices, we can begin to look at a variety of cellular responses to microcultures. Here we observe several differences in proliferation, glucose metabolism, signaling pathway activation and protein expression levels between cells cultured in traditional macroscale cultures and in microfluidic cultures. The issues of glucose starvation, growth factor restriction, volume density and effects of interactions with poly(dimethylsiloxane) (PDMS) were examined to determine the relative importance of each to cell behavior. Changes in glucose metabolism, insensitivity to volume density or media supplementation, and finally reduced proliferation as the exposure to PDMS increased, suggests that perhaps interactions between media/cells and this commonly employed polymer may be significant for some cell based assays. The differences between cells in macroscale and microfluidic cultures suggest that the cellular baseline may be substantially altered in microcultures due to both inherent differences in scale as well as material differences. The observations highlight the need to biologically validate micofluidic devices for cell based assays in order to accurately interpret the data obtained with them in the context of traditional macroculture data. Additional areas of study that will further characterize and validate microscale culture are discussed.

摘要

基于细胞培养的微流控装置为细胞提供了新型的工程微环境,并提供了控制和量化细胞对这些微环境响应的新方法。然而,如果不从细胞角度了解微器件中存在的微环境的影响,那么将微器件中的工作与通过传统方法获得的生物学数据进行整合将具有挑战性。通过对微流控装置进行 In Cell Westerns(ICWs)和原位分析技术的调整和验证,我们可以开始观察到各种细胞对微培养的反应。在这里,我们观察到细胞在传统的宏观培养和微流控培养中的增殖、葡萄糖代谢、信号通路激活和蛋白表达水平存在几种差异。研究了葡萄糖饥饿、生长因子限制、体积密度以及与聚二甲基硅氧烷(PDMS)相互作用的影响,以确定每个因素对细胞行为的相对重要性。葡萄糖代谢的变化、对体积密度或培养基补充的不敏感性,以及随着 PDMS 暴露量增加而导致增殖减少,这表明细胞与培养基之间的相互作用以及这种常用聚合物可能对某些基于细胞的测定非常重要。宏观培养和微流控培养中细胞之间的差异表明,由于固有尺度差异以及材料差异,微培养中的细胞基线可能会发生实质性改变。这些观察结果强调了需要对基于细胞的微流控装置进行生物学验证,以便能够根据传统的宏观培养数据准确地解释从这些装置中获得的数据。还讨论了进一步描述和验证微尺度培养的其他研究领域。

相似文献

1
From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures.
Integr Biol (Camb). 2009 Feb;1(2):182-95. doi: 10.1039/b814565b. Epub 2009 Jan 8.
2
Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
Biotechnol Prog. 2004 May-Jun;20(3):750-5. doi: 10.1021/bp0300568.
3
Tobacco protoplast culture in a polydimethylsiloxane-based microfluidic channel.
Protoplasma. 2006 May;227(2-4):237-40. doi: 10.1007/s00709-005-0142-2. Epub 2006 May 3.
4
Viable cell culture in PDMS-based microfluidic devices.
Methods Cell Biol. 2018;148:3-33. doi: 10.1016/bs.mcb.2018.09.007. Epub 2018 Nov 14.
5
Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
Biomed Microdevices. 2010 Apr;12(2):345-51. doi: 10.1007/s10544-009-9390-9.
6
Expanding the available assays: adapting and validating In-Cell Westerns in microfluidic devices for cell-based assays.
Assay Drug Dev Technol. 2010 Oct;8(5):591-601. doi: 10.1089/adt.2010.0274. Epub 2010 Jul 26.
7
Integrating polyurethane culture substrates into poly(dimethylsiloxane) microdevices.
Biomaterials. 2009 Oct;30(28):5241-50. doi: 10.1016/j.biomaterials.2009.05.066. Epub 2009 Jul 9.
8
Study of osteoblastic cells in a microfluidic environment.
Biomaterials. 2006 Feb;27(4):586-95. doi: 10.1016/j.biomaterials.2005.06.002. Epub 2005 Jul 18.

引用本文的文献

3
Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies.
Adv Healthc Mater. 2023 Jul;12(18):e2202936. doi: 10.1002/adhm.202202936. Epub 2023 Mar 20.
4
A Microfluidic Device for Long-Term Maintenance of Organotypic Liver Cultures.
Adv Mater Technol. 2023 Jan 24;8(2). doi: 10.1002/admt.202201121. Epub 2022 Oct 3.
5
Developing a transwell millifluidic device for studying blood-brain barrier endothelium.
Lab Chip. 2022 Nov 22;22(23):4603-4620. doi: 10.1039/d2lc00657j.
7
Narrow-Gap Rheometry: A Novel Method for Measuring Cell Mechanics.
Cells. 2022 Jun 23;11(13):2010. doi: 10.3390/cells11132010.
9
Advances in passively driven microfluidics and lab-on-chip devices: a comprehensive literature review and patent analysis.
RSC Adv. 2020 Mar 23;10(20):11652-11680. doi: 10.1039/d0ra00263a. eCollection 2020 Mar 19.

本文引用的文献

2
Managing evaporation for more robust microscale assays. Part 1. Volume loss in high throughput assays.
Lab Chip. 2008 Jun;8(6):852-9. doi: 10.1039/b717422e. Epub 2008 Apr 8.
3
Automated cell culture in high density tubeless microfluidic device arrays.
Lab Chip. 2008 May;8(5):717-24. doi: 10.1039/b715375a. Epub 2008 Mar 20.
5
Biomolecular gradients in cell culture systems.
Lab Chip. 2008 Jan;8(1):34-57. doi: 10.1039/b711887b. Epub 2007 Dec 6.
6
Understanding microchannel culture: parameters involved in soluble factor signaling.
Lab Chip. 2007 Jun;7(6):726-30. doi: 10.1039/b618793e. Epub 2007 Apr 19.
7
A practical guide to microfluidic perfusion culture of adherent mammalian cells.
Lab Chip. 2007 Jun;7(6):681-94. doi: 10.1039/b704602b. Epub 2007 May 11.
9
Differential regulation and properties of MAPKs.
Oncogene. 2007 May 14;26(22):3100-12. doi: 10.1038/sj.onc.1210392.
10
Analysis of single mammalian cells on-chip.
Lab Chip. 2007 Apr;7(4):423-40. doi: 10.1039/b615235j. Epub 2007 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验