Centro de Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Valparaíso, Chile.
Q Rev Biophys. 2009 Aug;42(3):201-46. doi: 10.1017/S0033583509990072.
Although a unifying characteristic common to all transient receptor potential (TRP) channel functions remains elusive, they could be described as tetramers formed by subunits with six transmembrane domains and containing cation-selective pores, which in several cases show high calcium permeability. TRP channels constitute a large superfamily of ion channels, and can be grouped into seven subfamilies based on their amino acid sequence homology: the canonical or classic TRPs, the vanilloid receptor TRPs, the melastatin or long TRPs, ankyrin (whose only member is the transmembrane protein 1 [TRPA1]), TRPN after the nonmechanoreceptor potential C (nonpC), and the more distant cousins, the polycystins and mucolipins. Because of their role as cellular sensors, polymodal activation and gating properties, many TRP channels are activated by a variety of different stimuli and function as signal integrators. Thus, how TRP channels function and how function relates to given structural determinants contained in the channel-forming protein has attracted the attention of biophysicists as well as molecular and cell biologists. The main purpose of this review is to summarize our present knowledge on the structure of channels of the TRP ion channel family. In the absence of crystal structure information for a complete TRP channel, we will describe important protein domains present in TRP channels, structure-function mutagenesis studies, the few crystal structures available for some TRP channel modules, and the recent determination of some TRP channel structures using electron microscopy.
虽然所有瞬时受体电位 (TRP) 通道功能的统一特征仍然难以捉摸,但可以将它们描述为由具有六个跨膜结构域的亚基组成的四聚体,并包含阳离子选择性孔道,在某些情况下显示出高钙通透性。TRP 通道构成了一个大型离子通道超家族,可以根据其氨基酸序列同源性分为七个亚家族:经典或经典 TRP、香草素受体 TRP、黑素瘤或长 TRP、锚蛋白(其唯一成员是跨膜蛋白 1 [TRPA1])、非机械感受器潜力 C 后的 TRPN(nonpC),以及更远的表亲,多囊蛋白和粘脂素。由于它们作为细胞传感器的作用、多模态激活和门控特性,许多 TRP 通道被各种不同的刺激激活,并作为信号整合器发挥作用。因此,TRP 通道如何发挥作用以及功能如何与通道形成蛋白中包含的特定结构决定因素相关,引起了生物物理学家以及分子和细胞生物学家的关注。本综述的主要目的是总结我们目前对 TRP 离子通道家族通道结构的了解。在缺乏完整 TRP 通道晶体结构信息的情况下,我们将描述 TRP 通道中存在的重要蛋白质结构域、结构-功能诱变研究、一些 TRP 通道模块的少数晶体结构以及最近使用电子显微镜确定的一些 TRP 通道结构。