Center for Regenerative and Developmental Biology and Department of Biology, Tufts University. Suite 4600, 200 Boston Avenue, Medford. MA 02155, USA.
Dev Biol. 2010 Mar 1;339(1):188-99. doi: 10.1016/j.ydbio.2009.12.012. Epub 2009 Dec 21.
Having the ability to coordinate the behavior of stem cells to induce regeneration of specific large-scale structures would have far-reaching consequences in the treatment of degenerative diseases, acute injury, and aging. Thus, identifying and learning to manipulate the sequential steps that determine the fate of new tissue within the overall morphogenetic program of the organism is fundamental. We identified novel early signals, mediated by the central nervous system and 3 innexin proteins, which determine the fate and axial polarity of regenerated tissue in planarians. Modulation of gap junction-dependent and neural signals specifically induces ectopic anterior regeneration blastemas in posterior and lateral wounds. These ectopic anterior blastemas differentiate new brains that establish permanent primary axes re-established during subsequent rounds of unperturbed regeneration. These data reveal powerful novel controls of pattern formation and suggest a constructive model linking nervous inputs and polarity determination in early stages of regeneration.
拥有协调干细胞行为以诱导特定大规模结构再生的能力,将在退行性疾病、急性损伤和衰老的治疗方面产生深远的影响。因此,确定并学习操纵决定生物体整体形态发生计划中新组织命运的顺序步骤是至关重要的。我们鉴定了新的早期信号,这些信号由中枢神经系统和 3 个连接蛋白介导,决定了涡虫再生组织的命运和轴向极性。间隙连接依赖性和神经信号的调节特异性诱导后、侧伤口中的异位前再生芽基。这些异位前芽基分化出新的大脑,在随后的未受干扰的再生循环中建立永久性的主要轴。这些数据揭示了模式形成的强大新控制,并提出了一个建设性的模型,将神经输入和极性确定联系起来,以解释再生的早期阶段。