York Neuroimaging Centre, The Biocentre, York Science Park, University of York, UK.
Neuroimage. 2010 Apr 15;50(3):1126-41. doi: 10.1016/j.neuroimage.2009.12.042. Epub 2009 Dec 21.
Functional MRI provides a unique perspective of neuronal organization; however, these data include many complex sources of spatiotemporal variability, which require spatial preprocessing and statistical analysis. For the latter, Bayesian models provide a promising alternative to classical inference, which uses results from Gaussian random field theory to assess the significance of spatially correlated statistic images. A Bayesian approach generalizes the application of these ideas in that (1) random fields are used to model all spatial parameters, not solely observation error, (2) their smoothness is optimized, and (3) a broader class of models can be compared. The main problem, however, is computational, due to the large number of voxels in a brain volume. Sampling methods are time-consuming; however, approximate inference using variational Bayes (VB) offers a principled and transparent way to specify assumptions necessary for computational tractability. Penny et al. (2005b) described such a scheme using a joint spatial prior and approximated the joint posterior density with one that factorized over voxels. However, a further computational bottleneck is encountered when evaluating the log model evidence used to compare models. This has lead to dividing a brain volume into slices and treating each independently. This amounts to approximating the spatial prior over a full volume with stacked 2D priors. That is, smoothness along the z-axis is not included in the model. Here we describe a VB scheme that approximates the zero mean joint spatial prior with a non-zero mean empirical prior that factors over voxels, thereby overcoming this problem. We do this by modifying the original VB algorithm of Penny et al. using the conditional form of a so-called conditional autoregressive (CAR) prior to update a marginal prior over voxels. We refer to this as a spatially-informed voxel-wise prior (SVP) and use them to spatially regularise general linear model (GLM) and autoregressive (AR) coefficients (over time to model serial correlations). This algorithm scales more favourably with the number of voxels providing a truly 3D spatiotemporal model over volumes containing tens of thousands of voxels. We compare the scaling of compute times with the number of voxels and performance with a joint prior applied to synthetic and single-subject data.
功能磁共振成像提供了一种研究神经元组织的独特视角;然而,这些数据包含许多复杂的时空变异性来源,这需要进行空间预处理和统计分析。对于后者,贝叶斯模型为经典推理提供了一个有前途的替代方法,经典推理使用高斯随机场理论的结果来评估空间相关统计图像的显著性。贝叶斯方法将这些思想的应用推广到以下方面:(1)使用随机场来建模所有的空间参数,而不仅仅是观测误差;(2)优化其平滑度;(3)可以比较更广泛的模型类。然而,主要的问题是计算上的,因为大脑体积中的体素数量非常大。采样方法非常耗时;然而,使用变分贝叶斯(VB)进行近似推理为指定计算可行性所需的假设提供了一种原则性和透明的方法。Penny 等人(2005b)使用联合空间先验描述了这样一种方案,并使用一种在体素上分解的方法来近似联合后验密度。然而,在评估用于比较模型的对数模型证据时,会遇到另一个计算上的瓶颈。这导致将大脑体积分成切片并分别处理。这相当于用堆叠的 2D 先验来近似整个体积的空间先验。也就是说,模型中不包括沿 z 轴的平滑度。在这里,我们描述了一种 VB 方案,该方案使用非零均值经验先验来近似零均值联合空间先验,该先验在体素上分解,从而克服了这个问题。我们通过修改 Penny 等人的原始 VB 算法,使用所谓的条件自回归(CAR)先验的条件形式来更新体素上的边缘先验来实现这一点。我们将其称为空间信息体素先验(SVP),并将其用于对广义线性模型(GLM)和自回归(AR)系数进行空间正则化(以随时间建模序列相关性)。该算法更有利于体素数量的增加,为包含数万个体素的体积提供了真正的 3D 时空模型。我们比较了计算时间随体素数量的增加而增加的情况,并将其与应用于合成数据和单个受试者数据的联合先验的性能进行了比较。