Suppr超能文献

具有空间3D先验的快速贝叶斯全脑功能磁共振成像分析。

Fast Bayesian whole-brain fMRI analysis with spatial 3D priors.

作者信息

Sidén Per, Eklund Anders, Bolin David, Villani Mattias

机构信息

Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, SE-581 83 Linköping, Sweden.

Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, SE-581 83 Linköping, Sweden; Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, SE-581 85 Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, SE-581 85 Linköping, Sweden.

出版信息

Neuroimage. 2017 Feb 1;146:211-225. doi: 10.1016/j.neuroimage.2016.11.040. Epub 2016 Nov 19.

Abstract

Spatial whole-brain Bayesian modeling of task-related functional magnetic resonance imaging (fMRI) is a great computational challenge. Most of the currently proposed methods therefore do inference in subregions of the brain separately or do approximate inference without comparison to the true posterior distribution. A popular such method, which is now the standard method for Bayesian single subject analysis in the SPM software, is introduced in Penny et al. (2005b). The method processes the data slice-by-slice and uses an approximate variational Bayes (VB) estimation algorithm that enforces posterior independence between activity coefficients in different voxels. We introduce a fast and practical Markov chain Monte Carlo (MCMC) scheme for exact inference in the same model, both slice-wise and for the whole brain using a 3D prior on activity coefficients. The algorithm exploits sparsity and uses modern techniques for efficient sampling from high-dimensional Gaussian distributions, leading to speed-ups without which MCMC would not be a practical option. Using MCMC, we are for the first time able to evaluate the approximate VB posterior against the exact MCMC posterior, and show that VB can lead to spurious activation. In addition, we develop an improved VB method that drops the assumption of independent voxels a posteriori. This algorithm is shown to be much faster than both MCMC and the original VB for large datasets, with negligible error compared to the MCMC posterior.

摘要

对与任务相关的功能磁共振成像(fMRI)进行全脑空间贝叶斯建模是一项巨大的计算挑战。因此,目前提出的大多数方法都是在大脑的子区域分别进行推断,或者进行近似推断,而不与真实的后验分布进行比较。Penny等人(2005b)介绍了一种流行的此类方法,该方法现在是SPM软件中贝叶斯单受试者分析的标准方法。该方法逐片处理数据,并使用一种近似变分贝叶斯(VB)估计算法,该算法强制不同体素中的活动系数之间具有后验独立性。我们引入了一种快速实用的马尔可夫链蒙特卡罗(MCMC)方案,用于在同一模型中进行精确推断,既可以逐片进行,也可以使用活动系数的三维先验对全脑进行推断。该算法利用了稀疏性,并使用现代技术从高维高斯分布中进行高效采样,从而实现了加速,否则MCMC将不是一个实际的选择。使用MCMC,我们首次能够将近似VB后验与精确的MCMC后验进行评估,并表明VB可能导致虚假激活。此外,我们开发了一种改进的VB方法,该方法放弃了后验中体素独立的假设。对于大型数据集,该算法被证明比MCMC和原始VB都要快得多,与MCMC后验相比误差可以忽略不计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验