Suppr超能文献

一种用于对相关时间进程进行聚类的功能磁共振成像(fMRI)数据的时空非参数贝叶斯变量选择模型。

A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses.

作者信息

Zhang Linlin, Guindani Michele, Versace Francesco, Vannucci Marina

机构信息

Department of Statistics, Rice University, Houston, USA.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA.

出版信息

Neuroimage. 2014 Jul 15;95:162-75. doi: 10.1016/j.neuroimage.2014.03.024. Epub 2014 Mar 18.

Abstract

In this paper we present a novel wavelet-based Bayesian nonparametric regression model for the analysis of functional magnetic resonance imaging (fMRI) data. Our goal is to provide a joint analytical framework that allows to detect regions of the brain which exhibit neuronal activity in response to a stimulus and, simultaneously, infer the association, or clustering, of spatially remote voxels that exhibit fMRI time series with similar characteristics. We start by modeling the data with a hemodynamic response function (HRF) with a voxel-dependent shape parameter. We detect regions of the brain activated in response to a given stimulus by using mixture priors with a spike at zero on the coefficients of the regression model. We account for the complex spatial correlation structure of the brain by using a Markov random field (MRF) prior on the parameters guiding the selection of the activated voxels, therefore capturing correlation among nearby voxels. In order to infer association of the voxel time courses, we assume correlated errors, in particular long memory, and exploit the whitening properties of discrete wavelet transforms. Furthermore, we achieve clustering of the voxels by imposing a Dirichlet process (DP) prior on the parameters of the long memory process. For inference, we use Markov Chain Monte Carlo (MCMC) sampling techniques that combine Metropolis-Hastings schemes employed in Bayesian variable selection with sampling algorithms for nonparametric DP models. We explore the performance of the proposed model on simulated data, with both block- and event-related design, and on real fMRI data.

摘要

在本文中,我们提出了一种基于小波的新型贝叶斯非参数回归模型,用于分析功能磁共振成像(fMRI)数据。我们的目标是提供一个联合分析框架,该框架能够检测出大脑中因刺激而表现出神经元活动的区域,同时推断出具有相似特征的fMRI时间序列的空间上遥远体素的关联或聚类。我们首先用具有体素依赖形状参数的血流动力学响应函数(HRF)对数据进行建模。我们通过在回归模型系数上使用在零处有尖峰的混合先验来检测因给定刺激而激活的大脑区域。我们通过在指导激活体素选择的参数上使用马尔可夫随机场(MRF)先验来考虑大脑复杂的空间相关结构,从而捕捉附近体素之间的相关性。为了推断体素时间序列的关联,我们假设相关误差,特别是长记忆,并利用离散小波变换的白化特性。此外,我们通过对长记忆过程的参数施加狄利克雷过程(DP)先验来实现体素的聚类。对于推断,我们使用马尔可夫链蒙特卡罗(MCMC)采样技术,该技术将贝叶斯变量选择中使用的Metropolis-Hastings方案与非参数DP模型的采样算法相结合。我们在具有块设计和事件相关设计的模拟数据以及真实fMRI数据上探索了所提出模型的性能。

相似文献

5
Fast Bayesian whole-brain fMRI analysis with spatial 3D priors.具有空间3D先验的快速贝叶斯全脑功能磁共振成像分析。
Neuroimage. 2017 Feb 1;146:211-225. doi: 10.1016/j.neuroimage.2016.11.040. Epub 2016 Nov 19.
6
Bayesian spatiotemporal model of fMRI data using transfer functions.基于转移函数的 fMRI 数据贝叶斯时空模型。
Neuroimage. 2010 Sep;52(3):995-1004. doi: 10.1016/j.neuroimage.2009.12.085. Epub 2010 Jan 4.
9

引用本文的文献

本文引用的文献

6
Functional and effective connectivity: a review.功能连接和有效连接:综述。
Brain Connect. 2011;1(1):13-36. doi: 10.1089/brain.2011.0008.
7
A Bayesian Discovery Procedure.一种贝叶斯发现程序。
J R Stat Soc Series B Stat Methodol. 2009 Nov 1;71(5):905-925. doi: 10.1111/j.1467-9868.2009.00714.x.
9
Spatially adaptive mixture modeling for analysis of FMRI time series.基于空间适应性混合模型的 fMRI 时间序列分析。
IEEE Trans Med Imaging. 2010 Apr;29(4):1059-74. doi: 10.1109/TMI.2010.2042064. Epub 2010 Mar 25.
10
A Bayesian spatiotemporal model for very large data sets.用于大数据集的贝叶斯时空模型。
Neuroimage. 2010 Apr 15;50(3):1126-41. doi: 10.1016/j.neuroimage.2009.12.042. Epub 2009 Dec 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验