Cai Wei, Xu Zhenli, Baumketner Andrij
Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223.
J Comput Phys. 2008 Dec 20;227(24):10162-10177. doi: 10.1016/j.jcp.2008.08.015.
In this paper, a new method for calculating effective atomic radii within the generalized Born (GB) model of implicit solvation is proposed, for use in computer simulations of bio-molecules. First, a new formulation for the GB radii is developed, in which smooth kernels are used to eliminate the divergence in volume integrals intrinsic in the model. Next, the Fast Fourier Transform (FFT) algorithm is applied to integrate smoothed functions, taking advantage of the rapid spectral decay provided by the smoothing. The total cost of the proposed algorithm scales as O(N(3)logN + M) where M is the number of atoms comprised in a molecule, and N is the number of FFT grid points in one dimension, which depends only on the geometry of the molecule and the spectral decay of the smooth kernel but not on M. To validate our algorithm, numerical tests are performed for three solute models: one spherical object for which exact solutions exist and two protein molecules of differing size. The tests show that our algorithm is able to reach the accuracy of other existing GB implementations, while offering much lower computational cost.
本文提出了一种在隐式溶剂化的广义玻恩(GB)模型内计算有效原子半径的新方法,用于生物分子的计算机模拟。首先,开发了一种GB半径的新公式,其中使用平滑核来消除模型中体积积分固有的发散。其次,应用快速傅里叶变换(FFT)算法对平滑函数进行积分,利用平滑提供的快速谱衰减。所提算法的总成本按O(N(3)logN + M)缩放,其中M是分子中包含的原子数,N是一维FFT网格点的数量,它仅取决于分子的几何形状和平滑核的谱衰减,而不取决于M。为验证我们的算法,对三种溶质模型进行了数值测试:一个存在精确解的球形物体和两个不同大小的蛋白质分子。测试表明,我们的算法能够达到其他现有GB实现的精度,同时提供低得多的计算成本。