文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

靶向小分子修饰纳米颗粒的结合亲和力和动力学分析。

Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles.

机构信息

Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Bioconjug Chem. 2010 Jan;21(1):14-9. doi: 10.1021/bc900438a.


DOI:10.1021/bc900438a
PMID:20028085
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2902264/
Abstract

Nanoparticles bearing surface-conjugated targeting ligands are increasingly being explored for a variety of biomedical applications. The multivalent conjugation of targeting ligands on the surface of nanoparticles is presumed to enhance binding to the desired target. However, given the complexities inherent in the interactions of nanoparticle surfaces with proteins, and the structural diversity of nanoparticle scaffolds and targeting ligands, our understanding of how conjugation of targeting ligands affects nanoparticle binding remains incomplete. Here, we use surface plasmon resonance (SPR) to directly and quantitatively study the affinity and binding kinetics of nanoparticles that display small molecules conjugated to their surface. We studied the interaction between a single protein target and a structurally related series of targeting ligands whose intrinsic affinity varies over a 4500-fold range and performed SPR at protein densities that reflect endogenous receptor densities. We report that even weak small molecule targeting ligands can significantly enhance target-specific avidity (by up to 4 orders of magnitude) through multivalent interactions and also observe a much broader range of kinetic effects than has been previously reported. Quantitative measurement of how the affinity and kinetics of nanoparticle binding vary as a function of different surface conjugations is a rapid, generalizable approach to nanoparticle characterization that can inform the design of nanoparticles for biomedical applications.

摘要

表面共轭靶向配体的纳米粒子越来越多地被探索用于各种生物医学应用。据推测,表面纳米粒子上靶向配体的多价连接可以增强与所需靶标的结合。然而,考虑到纳米粒子表面与蛋白质相互作用的复杂性以及纳米粒子支架和靶向配体的结构多样性,我们对连接靶向配体如何影响纳米粒子结合的理解仍然不完整。在这里,我们使用表面等离子体共振(SPR)直接定量研究了表面连接小分子的纳米粒子的亲和力和结合动力学。我们研究了单个蛋白质靶标与结构相关的一系列靶向配体之间的相互作用,这些配体的固有亲和力在 4500 倍范围内变化,并在反映内源性受体密度的蛋白质密度下进行了 SPR。我们报告说,即使是弱的小分子靶向配体也可以通过多价相互作用显著增强靶特异性亲和力(高达 4 个数量级),并且还观察到比以前报道的更广泛的动力学效应。定量测量纳米粒子结合的亲和力和动力学如何随不同表面连接而变化,是一种快速、可推广的纳米粒子表征方法,可以为生物医学应用的纳米粒子设计提供信息。

相似文献

[1]
Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles.

Bioconjug Chem. 2010-1

[2]
Evaluating binding avidities of populations of heterogeneous multivalent ligand-functionalized nanoparticles.

ACS Nano. 2014-5-13

[3]
On-chip bioorthogonal chemistry enables immobilization of in situ modified nanoparticles and small molecules for label-free monitoring of protein binding and reaction kinetics.

Lab Chip. 2012-7-3

[4]
Protein-Protein Interactions: Surface Plasmon Resonance.

Methods Mol Biol. 2017

[5]
The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform.

Chem Biol. 2007-1

[6]
Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy.

Acc Chem Res. 2011-6-10

[7]
The quantity of ligand-receptor interactions between nanoparticles and target cells.

Nanoscale Horiz. 2025-3-24

[8]
Evaluation the effect of nanoparticles on the structure of aptamers by analyzing the recognition dynamics of aptamer functionalized nanoparticles.

Anal Chim Acta. 2021-10-23

[9]
Applications of Surface Plasmon Resonance (SPR) to the Study of Diverse Protein-Ligand Interactions.

Curr Protoc. 2024-6

[10]
Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes.

Sensors (Basel). 2012-11-27

引用本文的文献

[1]
A Review on Perception of Binding Kinetics in Affinity Biosensors: Challenges and Opportunities.

ACS Omega. 2025-1-27

[2]
Green nanobiocatalysts: enhancing enzyme immobilization for industrial and biomedical applications.

PeerJ. 2024

[3]
and evaluation of the design of nano-phyto-drug candidate for oral use against .

PeerJ. 2023

[4]
Macromolecular assembly of bioluminescent protein nanoparticles for enhanced imaging.

Mater Today Bio. 2022-10-8

[5]
Surface Presentation of Hyaluronic Acid Modulates Nanoparticle-Cell Association.

Bioconjug Chem. 2022-11-16

[6]
A nano-enhanced vaccine for metastatic melanoma immunotherapy.

Cancer Drug Resist. 2022-7-7

[7]
A high-throughput screening campaign against PFKFB3 identified potential inhibitors with novel scaffolds.

Acta Pharmacol Sin. 2023-3

[8]
A global method for fast simulations of molecular dynamics in multiscale agent-based models of biological tissues.

iScience. 2022-5-13

[9]
Biophysical Characterization of Novel DNA Aptamers against K103N/Y181C Double Mutant HIV-1 Reverse Transcriptase.

Molecules. 2022-1-3

[10]
Polyvalent design in the cGAS-STING pathway.

Semin Immunol. 2021-8

本文引用的文献

[1]
Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors.

Angew Chem Int Ed Engl. 1998-11-2

[2]
Unbiased discovery of in vivo imaging probes through in vitro profiling of nanoparticle libraries.

Integr Biol (Camb). 2009-2-9

[3]
Identifying the proteins to which small-molecule probes and drugs bind in cells.

Proc Natl Acad Sci U S A. 2009-3-24

[4]
Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts.

Proc Natl Acad Sci U S A. 2008-9-23

[5]
Inhibition of HIV fusion with multivalent gold nanoparticles.

J Am Chem Soc. 2008-6-4

[6]
Small-molecule reagents for cellular pull-down experiments.

Bioconjug Chem. 2008-3

[7]
Factors determining antibody distribution in tumors.

Trends Pharmacol Sci. 2008-2

[8]
Ring-opening and ring-closing reactions of a shikimic acid-derived substrate leading to diverse small molecules.

J Comb Chem. 2007

[9]
Selective tumor cell targeting using low-affinity, multivalent interactions.

ACS Chem Biol. 2007-2-20

[10]
Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles.

Proc Natl Acad Sci U S A. 2007-2-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索