文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过纳米颗粒文库的体外分析实现体内成像探针的无偏发现。

Unbiased discovery of in vivo imaging probes through in vitro profiling of nanoparticle libraries.

机构信息

Center for Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St., Rm 5420, Charlestown, MA 02129, USA.

出版信息

Integr Biol (Camb). 2009 Apr;1(4):311-7. doi: 10.1039/b821775k. Epub 2009 Feb 9.


DOI:10.1039/b821775k
PMID:20023731
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2748356/
Abstract

In vivo imaging reveals how proteins and cells function as part of complex regulatory networks in intact organisms, and thereby contributes to a systems-level understanding of biological processes. However, the development of novel in vivo imaging probes remains challenging. Most probes are directed against a limited number of pre-specified protein targets; cell-based screens for imaging probes have shown promise, but raise concerns over whether in vitro surrogate cell models recapitulate in vivo phenotypes. Here, we rapidly profile the in vitro binding of nanoparticle imaging probes in multiple samples of defined target vs. background cell types, using primary cell isolates. This approach selects for nanoparticles that show desired targeting effects across all tested members of a class of cells, and decreases the likelihood that an idiosyncratic cell line will unduly skew screening results. To adjust for multiple hypothesis testing, we use permutation methods to identify nanoparticles that best differentiate between the target and background cell classes. (This approach is conceptually analogous to one used for high-dimensionality datasets of genome-wide gene expression, e.g. to identify gene expression signatures that discriminate subclasses of cancer.) We apply this approach to the identification of nanoparticle imaging probes that bind endothelial cells, and validate our in vitro findings in human arterial samples, and by in vivo intravital microscopy in mice. Overall, this work presents a generalizable approach to the unbiased discovery of in vivo imaging probes, and may guide the further development of novel endothelial imaging probes.

摘要

在体成像揭示了蛋白质和细胞如何作为完整生物体中复杂调控网络的一部分发挥功能,从而有助于从系统层面理解生物学过程。然而,新型在体成像探针的开发仍然具有挑战性。大多数探针针对的是数量有限的预先指定的蛋白质靶标;针对成像探针的基于细胞的筛选显示出了前景,但人们担心体外替代细胞模型是否能再现体内表型。在这里,我们使用原代细胞分离物,快速分析了纳米颗粒成像探针在多个预定靶标与背景细胞类型样本中的体外结合情况。这种方法选择了在所有测试的细胞类别的成员中都表现出所需靶向效果的纳米颗粒,并降低了特立独行的细胞系将过度扭曲筛选结果的可能性。为了调整多重假设检验,我们使用置换方法来识别最能区分靶标和背景细胞类别的纳米颗粒。(这种方法在概念上类似于用于全基因组基因表达的高维数据集的方法,例如,识别区分癌症亚类的基因表达特征。)我们将这种方法应用于鉴定与内皮细胞结合的纳米颗粒成像探针,并在人类动脉样本中验证了我们的体外发现,以及在小鼠体内活体显微镜下进行了验证。总的来说,这项工作提出了一种可推广的用于无偏发现在体成像探针的方法,并可能为新型内皮成像探针的进一步开发提供指导。

相似文献

[1]
Unbiased discovery of in vivo imaging probes through in vitro profiling of nanoparticle libraries.

Integr Biol (Camb). 2009-2-9

[2]
In vivo nanoparticle assessment of pathological endothelium predicts the development of inflow stenosis in murine arteriovenous fistula.

Arterioscler Thromb Vasc Biol. 2015-1

[3]
Short-term biocompatibility of biphasic nanocolloids with potential use as anisotropic imaging probes.

Biomaterials. 2007-5

[4]
Evaluation of nanoparticle uptake in tumors in real time using intravital imaging.

J Vis Exp. 2011-6-21

[5]
Development of a dual-wavelength fluorescent nanoprobe for in vivo and in vitro cell tracking consecutively.

Bioorg Med Chem. 2019-3-19

[6]
Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo.

ACS Nano. 2013-7-26

[7]
Holding-Oriented versus Gating-Oriented Live-Cell Distinction: Highlighting the Role of Transporters in Cell Imaging Probe Development.

Acc Chem Res. 2019-7-2

[8]
Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors.

Bioconjug Chem. 2012-6-4

[9]
Nanoparticles for In Vivo Lifetime Multiplexed Imaging.

Methods Mol Biol. 2021

[10]
In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010

引用本文的文献

[1]
Chemical basis of interactions between engineered nanoparticles and biological systems.

Chem Rev. 2014-8-13

[2]
Imaging macrophages with nanoparticles.

Nat Mater. 2014-2

[3]
Visualizing chemical structure-subcellular localization relationships using fluorescent small molecules as probes of cellular transport.

J Cheminform. 2013-10-5

[4]
Multimodal iron oxide nanoparticles for hybrid biomedical imaging.

NMR Biomed. 2012-10-15

[5]
Compact zwitterion-coated iron oxide nanoparticles for in vitro and in vivo imaging.

Integr Biol (Camb). 2013-1

[6]
On-chip bioorthogonal chemistry enables immobilization of in situ modified nanoparticles and small molecules for label-free monitoring of protein binding and reaction kinetics.

Lab Chip. 2012-7-3

[7]
Techniques for molecular imaging probe design.

Mol Imaging. 2011-12

[8]
Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy.

Acc Chem Res. 2011-6-10

[9]
Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles.

Bioconjug Chem. 2010-1

[10]
Early identification of aortic valve sclerosis using iron oxide enhanced MRI.

J Magn Reson Imaging. 2010-1

本文引用的文献

[1]
Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy.

Int J Nanomedicine. 2008

[2]
A review of imaging techniques for systems biology.

BMC Syst Biol. 2008-8-12

[3]
Perturbational profiling of nanomaterial biologic activity.

Proc Natl Acad Sci U S A. 2008-5-27

[4]
Imaging in the era of molecular oncology.

Nature. 2008-4-3

[5]
Small-molecule fluorophores to detect cell-state switching in the context of high-throughput screening.

J Am Chem Soc. 2008-4-2

[6]
Endothelium in health and disease.

Pharmacol Rep. 2008

[7]
Towards the optimal screening collection: a synthesis strategy.

Angew Chem Int Ed Engl. 2008

[8]
Styryl-based compounds as potential in vivo imaging agents for beta-amyloid plaques.

Chembiochem. 2007-9-24

[9]
Phenotypic heterogeneity of the endothelium: II. Representative vascular beds.

Circ Res. 2007-2-2

[10]
Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms.

Circ Res. 2007-2-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索