Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
Lab Chip. 2012 Sep 7;12(17):3103-10. doi: 10.1039/c2lc40337d. Epub 2012 Jul 3.
Efficient methods to immobilize small molecules under continuous-flow microfluidic conditions would greatly improve label-free molecular interaction studies using biosensor technology. At present, small-molecule immobilization chemistries require special conditions and in many cases must be performed outside the detector and microfluidic system where real-time monitoring is not possible. Here, we have developed and optimized a method for on-chip bioorthogonal chemistry that enables rapid, reversible immobilization of small molecules with control over orientation and immobilization density, and apply this technique to surface plasmon resonance (SPR) studies. Immobilized small molecules reverse the orientation of canonical SPR interaction studies, and also enable a variety of new SPR applications including on-chip assembly and interaction studies of multicomponent structures, such as functionalized nanoparticles, and measurement of bioorthogonal reaction rates. We use this approach to demonstrate that on-chip assembled functionalized nanoparticles show a preserved ability to interact with their target protein, and to measure rapid bioorthogonal reaction rates with k(2) > 10(3) M(-1) s(-1). This method offers multiple benefits for microfluidic biological applications, including rapid screening of targeted nanoparticles with vastly decreased nanoparticle synthetic requirements, robust immobilization chemistry in the presence of serum, and a continuous flow technique that mimics biologic contexts better than current methods used to measure bioorthogonal reaction kinetics such as NMR or UV-vis spectroscopy (e.g., stopped flow kinetics). Taken together, this approach constitutes a flexible and powerful technique for evaluating a wide variety of reactions and intermolecular interactions for in vitro or in vivo applications.
在连续流微流控条件下,将小分子固定化的高效方法将极大地改进使用生物传感器技术的无标记分子相互作用研究。目前,小分子固定化化学需要特殊条件,在许多情况下,必须在检测器和微流控系统之外进行,而实时监测是不可能的。在这里,我们开发并优化了一种用于芯片上生物正交化学的方法,该方法能够快速、可逆地固定小分子,控制其取向和固定密度,并将该技术应用于表面等离子体共振(SPR)研究。固定化的小分子会改变典型 SPR 相互作用研究的取向,还可以实现各种新的 SPR 应用,包括芯片上组装和多组分结构(如功能化纳米粒子)的相互作用研究,以及生物正交反应速率的测量。我们使用这种方法证明了芯片上组装的功能化纳米粒子仍然能够与它们的靶蛋白相互作用,并能够以 k(2) > 10(3) M(-1) s(-1)的速率快速测量生物正交反应速率。该方法为微流控生物应用提供了多种优势,包括对靶向纳米粒子的快速筛选,大大减少了纳米粒子的合成要求,在血清存在的情况下具有稳健的固定化化学性质,以及连续流动技术,该技术比目前用于测量生物正交反应动力学的方法(如 NMR 或 UV-vis 光谱学)更好地模拟生物环境(例如,停止流动动力学)。总之,这种方法构成了一种灵活而强大的技术,可用于评估各种用于体外或体内应用的反应和分子间相互作用。