Suppr超能文献

病毒蛋白 NSP2 将游离微管蛋白分子隔离,导致轮状病毒感染期间微管的解聚。

Sequestration of free tubulin molecules by the viral protein NSP2 induces microtubule depolymerization during rotavirus infection.

机构信息

Virologie Moléculaire et Structurale, CNRS UMR 2472, INRA UMR 1157, IFR 115, Avenue de la Terrasse, Gif sur Yvette, France.

出版信息

J Virol. 2010 Mar;84(5):2522-32. doi: 10.1128/JVI.01883-09. Epub 2009 Dec 23.

Abstract

Microtubules, components of the cell cytoskeleton, play a central role in cellular trafficking. Here we show that rotavirus infection leads to a remodeling of the microtubule network together with the formation of tubulin granules. While most microtubules surrounding the nucleus depolymerize, others appear packed at the cell periphery. In microtubule depolymerization areas, tubulin granules are observed; they colocalize with viroplasms, viral compartments formed by interactions between rotavirus proteins NSP2 and NSP5. With purified proteins, we show that tubulin directly interacts in vitro with NSP2 but not with NSP5. The binding of NSP2 to tubulin is independent of its phosphatase activity. The comparison of three-dimensional (3-D) reconstructions of NSP2 octamers alone or associated with tubulin reveals electron densities in the positively charged grooves of NSP2 that we attribute to tubulin. Site-directed mutagenesis of NSP2 and competition assays between RNA and tubulin for NSP2 binding confirm that tubulin binds to these charged grooves of NSP2. Although the tubulin position within NSP2 grooves cannot be precisely determined, the tubulin C-terminal H12 alpha-helix could be involved in the interaction. NSP2 overexpression and rotavirus infection produce similar effects on the microtubule network. NSP2 depolymerizes microtubules and leads to tubulin granule formation. Our results demonstrate that tubulin is a viroplasm component and reveal an original mechanism. Tubulin sequestration by NSP2 induces microtubule depolymerization. This depolymerization probably reroutes the cell machinery by inhibiting trafficking and functions potentially involved in defenses to viral infections.

摘要

微管是细胞细胞骨架的组成部分,在细胞运输中起核心作用。在这里,我们发现轮状病毒感染导致微管网络的重构,同时形成微管颗粒。虽然大多数围绕核的微管解聚,但其他微管似乎在细胞边缘聚集。在微管解聚区域,观察到微管颗粒;它们与 viroplasms 共定位,viroplasms 是由轮状病毒蛋白 NSP2 和 NSP5 之间的相互作用形成的病毒区室。使用纯化的蛋白质,我们表明 tubulin 与 NSP2 直接在体外相互作用,但与 NSP5 不相互作用。NSP2 与微管的结合与其磷酸酶活性无关。单独或与微管结合的 NSP2 八聚体的三维(3-D)重建的比较揭示了 NSP2 中带正电荷的凹槽中的电子密度,我们将其归因于微管。NSP2 的定点突变和 RNA 与微管之间竞争 NSP2 结合的测定证实,微管与 NSP2 的这些带电荷的凹槽结合。尽管不能精确确定微管在 NSP2 凹槽中的位置,但微管 C 末端 H12 alpha-螺旋可能参与相互作用。NSP2 过表达和轮状病毒感染对微管网络产生相似的影响。NSP2 使微管解聚并导致微管颗粒形成。我们的结果表明微管是 viroplasm 的组成部分,并揭示了一种原始机制。NSP2 将微管捕获,导致微管解聚。这种解聚可能通过抑制运输和潜在涉及病毒感染防御的功能来重新路由细胞机制。

相似文献

2
Association of rotavirus viroplasms with microtubules through NSP2 and NSP5.
Mem Inst Oswaldo Cruz. 2006 Sep;101(6):603-11. doi: 10.1590/s0074-02762006000600006.
4
Cryoelectron microscopy structures of rotavirus NSP2-NSP5 and NSP2-RNA complexes: implications for genome replication.
J Virol. 2006 Nov;80(21):10829-35. doi: 10.1128/JVI.01347-06. Epub 2006 Aug 23.
6
Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E12015-E12023. doi: 10.1073/pnas.1717944115. Epub 2018 Dec 3.
8
Characterization of viroplasm-like structures by co-expression of NSP5 and NSP2 across rotavirus species A to J.
J Virol. 2024 Sep 17;98(9):e0097524. doi: 10.1128/jvi.00975-24. Epub 2024 Aug 28.
9
Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation.
J Gen Virol. 2004 Mar;85(Pt 3):625-634. doi: 10.1099/vir.0.19611-0.

引用本文的文献

1
Characterization of viroplasm-like structures by co-expression of NSP5 and NSP2 across rotavirus species A to J.
J Virol. 2024 Sep 17;98(9):e0097524. doi: 10.1128/jvi.00975-24. Epub 2024 Aug 28.
2
Rotavirus NSP2: A Master Orchestrator of Early Viral Particle Assembly.
Viruses. 2024 May 21;16(6):814. doi: 10.3390/v16060814.
4
The recruitment of TRiC chaperonin in rotavirus viroplasms correlates with virus replication.
mBio. 2024 Apr 10;15(4):e0049924. doi: 10.1128/mbio.00499-24. Epub 2024 Mar 12.
5
Structural basis of microtubule depolymerization by the kinesin-like activity of HIV-1 Rev.
Structure. 2023 Oct 5;31(10):1233-1246.e5. doi: 10.1016/j.str.2023.07.009. Epub 2023 Aug 11.
6
Sneaking into the viral safe-houses: Implications of host components in regulating integrity and dynamics of rotaviral replication factories.
Front Cell Infect Microbiol. 2022 Sep 14;12:977799. doi: 10.3389/fcimb.2022.977799. eCollection 2022.
7
Re-Examining Rotavirus Innate Immune Evasion: Potential Applications of the Reverse Genetics System.
mBio. 2022 Aug 30;13(4):e0130822. doi: 10.1128/mbio.01308-22. Epub 2022 Jun 14.
9
Viroplasms: Assembly and Functions of Rotavirus Replication Factories.
Viruses. 2021 Jul 12;13(7):1349. doi: 10.3390/v13071349.
10
Conserved Rotavirus NSP5 and VP2 Domains Interact and Affect Viroplasm.
J Virol. 2020 Mar 17;94(7). doi: 10.1128/JVI.01965-19.

本文引用的文献

2
Aggresomes and pericentriolar sites of virus assembly: cellular defense or viral design?
Annu Rev Microbiol. 2007;61:149-67. doi: 10.1146/annurev.micro.57.030502.090836.
7
Microtubule-organizing centres: a re-evaluation.
Nat Rev Mol Cell Biol. 2007 Feb;8(2):161-7. doi: 10.1038/nrm2100.
8
Association of rotavirus viroplasms with microtubules through NSP2 and NSP5.
Mem Inst Oswaldo Cruz. 2006 Sep;101(6):603-11. doi: 10.1590/s0074-02762006000600006.
9
Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities.
J Mol Biol. 2006 Sep 22;362(3):539-54. doi: 10.1016/j.jmb.2006.07.050. Epub 2006 Jul 29.
10
Cryoelectron microscopy structures of rotavirus NSP2-NSP5 and NSP2-RNA complexes: implications for genome replication.
J Virol. 2006 Nov;80(21):10829-35. doi: 10.1128/JVI.01347-06. Epub 2006 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验