Suppr超能文献

一种基因工程改造的轮状病毒 NSP2 磷酸化突变体,在 viroplasm 形成和复制方面受到损害,显示 vNSP2 与细胞脂滴之间的早期相互作用。

A Genetically Engineered Rotavirus NSP2 Phosphorylation Mutant Impaired in Viroplasm Formation and Replication Shows an Early Interaction between vNSP2 and Cellular Lipid Droplets.

机构信息

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.

Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.

出版信息

J Virol. 2020 Jul 16;94(15). doi: 10.1128/JVI.00972-20.

Abstract

Many RNA viruses replicate in cytoplasmic compartments (virus factories or viroplasms) composed of viral and cellular proteins, but the mechanisms required for their formation remain largely unknown. Rotavirus (RV) replication in viroplasms requires interactions between virus nonstructural proteins NSP2 and NSP5, which are associated with components of lipid droplets (LDs). We previously identified two forms of NSP2 in RV-infected cells, a cytoplasmically dispersed form (dNSP2) and a viroplasm-specific form (vNSP2), which interact with hypophosphorylated and hyperphosphorylated NSP5, respectively, indicating that a coordinated phosphorylation cascade controls viroplasm assembly. The cellular kinase CK1α phosphorylates NSP2 on serine 313, triggering the localization of vNSP2 to sites of viroplasm assembly and its association with hyperphosphorylated NSP5. Using reverse genetics, we generated a rotavirus with a phosphomimetic NSP2 (S313D) mutation to directly evaluate the role of CK1α NSP2 phosphorylation in viroplasm formation. Recombinant rotavirus NSP2 S313D (rRV NSP2 S313D) is significantly delayed in viroplasm formation and in virus replication and interferes with wild-type RV replication in coinfection. Taking advantage of the delay in viroplasm formation, the NSP2 phosphomimetic mutant was used as a tool to observe very early events in viroplasm assembly. We show that (i) viroplasm assembly correlates with NSP5 hyperphosphorylation and (ii) vNSP2 S313D colocalizes with RV-induced LDs without NSP5, suggesting that vNSP2 phospho-S313 is sufficient for interacting with LDs and may be the virus factor required for RV-induced LD formation. Further studies with the rRV NSP2 S313D virus are expected to reveal new aspects of viroplasm and LD initiation and assembly. Reverse genetics was used to generate a recombinant rotavirus with a single phosphomimetic mutation in nonstructural protein 2 (NSP2 S313D) that exhibits delayed viroplasm formation, delayed replication, and an interfering phenotype during coinfection with wild-type rotavirus, indicating the importance of this amino acid during virus replication. Exploiting the delay in viroplasm assembly, we found that viroplasm-associated NSP2 colocalizes with rotavirus-induced lipid droplets prior to the accumulation of other rotavirus proteins that are required for viroplasm formation and that NSP5 hyperphosphorylation is required for viroplasm assembly. These data suggest that NSP2 phospho-S313 is sufficient for interaction with lipid droplets and may be the virus factor that induces lipid droplet biogenesis in rotavirus-infected cells. Lipid droplets are cellular organelles critical for the replication of many viral and bacterial pathogens, and thus, understanding the mechanism of NSP2-mediated viroplasm/lipid droplet initiation and interaction will lead to new insights into this important host-pathogen interaction.

摘要

许多 RNA 病毒在细胞质隔室(病毒工厂或病毒质体)中复制,这些隔室由病毒和细胞蛋白组成,但它们的形成机制在很大程度上仍不清楚。轮状病毒(RV)在病毒质体中的复制需要非结构蛋白 NSP2 和 NSP5 之间的相互作用,这两种蛋白与脂滴(LDs)的成分有关。我们之前在 RV 感染的细胞中鉴定出两种形式的 NSP2,一种是细胞质分散形式(dNSP2),另一种是专门存在于病毒质体中的形式(vNSP2),它们分别与低磷酸化和高磷酸化的 NSP5 相互作用,表明协调的磷酸化级联反应控制着病毒质体的组装。细胞激酶 CK1α 在丝氨酸 313 上磷酸化 NSP2,触发 vNSP2 定位于病毒质体组装部位,并与高磷酸化的 NSP5 结合。我们使用反向遗传学生成了一个带有磷酸模拟 NSP2(S313D)突变的轮状病毒,以直接评估 CK1α-NSP2 磷酸化在病毒质体形成中的作用。重组轮状病毒 NSP2 S313D(rRV NSP2 S313D)在病毒质体形成和病毒复制中显著延迟,并在共感染时干扰野生型 RV 的复制。利用病毒质体形成的延迟,NSP2 磷酸模拟突变体被用作工具来观察病毒质体组装的早期事件。我们表明:(i)病毒质体的组装与 NSP5 的高磷酸化有关;(ii)vNSP2 S313D 与 RV 诱导的 LD 共定位,而没有 NSP5,这表明 vNSP2 磷酸化 S313 足以与 LD 相互作用,并且可能是 RV 诱导 LD 形成所必需的病毒因子。使用 rRV NSP2 S313D 病毒进行进一步研究,有望揭示病毒质体和 LD 起始和组装的新方面。我们使用反向遗传学生成了一个重组轮状病毒,该病毒的非结构蛋白 2(NSP2 S313D)中有一个单一的磷酸模拟突变,该突变表现出病毒质体形成延迟、复制延迟和与野生型轮状病毒共感染时的干扰表型,表明该氨基酸在病毒复制过程中很重要。利用病毒质体组装的延迟,我们发现病毒质体相关的 NSP2 在轮状病毒诱导的脂滴积累之前与 NSP2 共定位,而 NSP2 是形成病毒质体所必需的其他轮状病毒蛋白,并且 NSP5 的高磷酸化是病毒质体组装所必需的。这些数据表明,NSP2 磷酸化 S313 足以与脂滴相互作用,并且可能是诱导轮状病毒感染细胞中脂滴生物发生的病毒因子。脂滴是许多病毒和细菌病原体复制的关键细胞器官,因此,了解 NSP2 介导的病毒质体/脂滴起始和相互作用的机制将为这一重要的宿主-病原体相互作用提供新的见解。

相似文献

2
Plasmid-based reverse genetics for probing phosphorylation-dependent viroplasm formation in rotaviruses.
Virus Res. 2021 Jan 2;291:198193. doi: 10.1016/j.virusres.2020.198193. Epub 2020 Oct 11.
4
Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E12015-E12023. doi: 10.1073/pnas.1717944115. Epub 2018 Dec 3.
6
Conserved Rotavirus NSP5 and VP2 Domains Interact and Affect Viroplasm.
J Virol. 2020 Mar 17;94(7). doi: 10.1128/JVI.01965-19.
7
Flexibility of the Rotavirus NSP2 C-Terminal Region Supports Factory Formation via Liquid-Liquid Phase Separation.
J Virol. 2023 Feb 28;97(2):e0003923. doi: 10.1128/jvi.00039-23. Epub 2023 Feb 7.
8
Characterization of viroplasm-like structures by co-expression of NSP5 and NSP2 across rotavirus species A to J.
J Virol. 2024 Sep 17;98(9):e0097524. doi: 10.1128/jvi.00975-24. Epub 2024 Aug 28.

引用本文的文献

1
Proteome-wide characterization of PTMs reveals host cell responses to viral infection and identifies putative antiviral drug targets.
Front Immunol. 2025 May 30;16:1587106. doi: 10.3389/fimmu.2025.1587106. eCollection 2025.
2
Rotavirus Spreads in a Spatially Controlled Manner.
Cells. 2025 Feb 19;14(4):313. doi: 10.3390/cells14040313.
3
Rotavirus NSP2: A Master Orchestrator of Early Viral Particle Assembly.
Viruses. 2024 May 21;16(6):814. doi: 10.3390/v16060814.
5
Rotavirus-mediated DGAT1 degradation: A pathophysiological mechanism of viral-induced malabsorptive diarrhea.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2302161120. doi: 10.1073/pnas.2302161120. Epub 2023 Dec 11.
7
Recombinant rotavirus expressing the glycosylated S1 protein of SARS-CoV-2.
J Gen Virol. 2023 Oct;104(10). doi: 10.1099/jgv.0.001899.
8
CLIC and membrane wound repair pathways enable pandemic norovirus entry and infection.
Nat Commun. 2023 Feb 28;14(1):1148. doi: 10.1038/s41467-023-36398-z.
9
Flexibility of the Rotavirus NSP2 C-Terminal Region Supports Factory Formation via Liquid-Liquid Phase Separation.
J Virol. 2023 Feb 28;97(2):e0003923. doi: 10.1128/jvi.00039-23. Epub 2023 Feb 7.
10
Sneaking into the viral safe-houses: Implications of host components in regulating integrity and dynamics of rotaviral replication factories.
Front Cell Infect Microbiol. 2022 Sep 14;12:977799. doi: 10.3389/fcimb.2022.977799. eCollection 2022.

本文引用的文献

2
Nanoscale organization of rotavirus replication machineries.
Elife. 2019 Jul 25;8:e42906. doi: 10.7554/eLife.42906.
3
Viral Generated Inter-Organelle Contacts Redirect Lipid Flux for Genome Replication.
Cell. 2019 Jul 11;178(2):275-289.e16. doi: 10.1016/j.cell.2019.05.030. Epub 2019 Jun 13.
4
Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E12015-E12023. doi: 10.1073/pnas.1717944115. Epub 2018 Dec 3.
5
Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years.
JAMA Pediatr. 2018 Oct 1;172(10):958-965. doi: 10.1001/jamapediatrics.2018.1960.
6
Lipid Droplet, a Key Player in Host-Parasite Interactions.
Front Immunol. 2018 May 23;9:1022. doi: 10.3389/fimmu.2018.01022. eCollection 2018.
8
Entirely plasmid-based reverse genetics system for rotaviruses.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2349-2354. doi: 10.1073/pnas.1618424114. Epub 2017 Jan 30.
9
Lipid droplets form complexes with viroplasms and are crucial for rotavirus replication.
Curr Opin Virol. 2016 Aug;19:11-5. doi: 10.1016/j.coviro.2016.05.008. Epub 2016 Jun 21.
10
Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract.
Exp Biol Med (Maywood). 2014 Sep;239(9):1124-34. doi: 10.1177/1535370214529398. Epub 2014 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验