Department of Neurology, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
J Biol Chem. 2010 Mar 5;285(10):7619-32. doi: 10.1074/jbc.M109.057182. Epub 2009 Dec 23.
Synaptic degeneration, including impairment of synaptic plasticity and loss of synapses, is an important feature of Alzheimer disease pathogenesis. Increasing evidence suggests that these degenerative synaptic changes are associated with an accumulation of soluble oligomeric assemblies of amyloid beta (Abeta) known as ADDLs. In primary hippocampal cultures ADDLs bind to a subpopulation of neurons. However the molecular basis of this cell type-selective interaction is not understood. Here, using siRNA screening technology, we identified alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits and calcineurin as candidate genes potentially involved in ADDL-neuron interactions. Immunocolocalization experiments confirmed that ADDL binding occurs in dendritic spines that express surface AMPA receptors, particularly the calcium-impermeable type II AMPA receptor subunit (GluR2). Pharmacological removal of the surface AMPA receptors or inhibition of AMPA receptors with antagonists reduces ADDL binding. Furthermore, using co-immunoprecipitation and photoreactive amino acid cross-linking, we found that ADDLs interact preferentially with GluR2-containing complexes. We demonstrate that calcineurin mediates an endocytotic process that is responsible for the rapid internalization of bound ADDLs along with surface AMPA receptor subunits, which then both colocalize with cpg2, a molecule localized specifically at the postsynaptic endocytic zone of excitatory synapses that plays an important role in activity-dependent glutamate receptor endocytosis. Both AMPA receptor and calcineurin inhibitors prevent oligomer-induced surface AMPAR and spine loss. These results support a model of disease pathogenesis in which Abeta oligomers interact selectively with neurotransmission pathways at excitatory synapses, resulting in synaptic loss via facilitated endocytosis. Validation of this model in human disease would identify therapeutic targets for Alzheimer disease.
突触退化,包括突触可塑性受损和突触丧失,是阿尔茨海默病发病机制的一个重要特征。越来越多的证据表明,这些退化性突触变化与淀粉样β(Abeta)的可溶性寡聚体聚集物,即 ADDLs 的积累有关。在原代海马培养物中,ADDLs 与神经元的亚群结合。然而,这种细胞类型选择性相互作用的分子基础尚不清楚。在这里,我们使用 siRNA 筛选技术,鉴定了α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体亚基和钙调神经磷酸酶作为可能参与 ADDL-神经元相互作用的候选基因。免疫共定位实验证实,ADDL 结合发生在表达表面 AMPA 受体的树突棘上,特别是钙通透性 II 型 AMPA 受体亚基(GluR2)。表面 AMPA 受体的药理学去除或用拮抗剂抑制 AMPA 受体可减少 ADDL 结合。此外,我们使用共免疫沉淀和光反应性氨基酸交联,发现 ADDLs 与含有 GluR2 的复合物优先相互作用。我们证明钙调神经磷酸酶介导了一个内吞过程,负责与表面 AMPA 受体亚基一起快速内化结合的 ADDLs,然后两者都与 cpg2 共定位,cpg2 是一种特异性定位于兴奋性突触后内吞区的分子,在谷氨酸受体内吞的活动依赖性中发挥重要作用。AMPA 受体和钙调神经磷酸酶抑制剂均可防止寡聚物诱导的表面 AMPAR 和棘突丢失。这些结果支持了一种疾病发病机制模型,即 Abeta 寡聚物选择性地与兴奋性突触的神经传递途径相互作用,通过促进内吞导致突触丢失。如果在人类疾病中验证该模型,将确定阿尔茨海默病的治疗靶点。