Suppr超能文献

多重扩展揭示了健康和患病大脑中多蛋白纳米结构的成像。

Multiplexed expansion revealing for imaging multiprotein nanostructures in healthy and diseased brain.

机构信息

McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.

Yang Tan Collective, MIT, Cambridge, MA, USA.

出版信息

Nat Commun. 2024 Nov 9;15(1):9722. doi: 10.1038/s41467-024-53729-w.

Abstract

Proteins work together in nanostructures in many physiological contexts and disease states. We recently developed expansion revealing (ExR), which expands proteins away from each other, in order to support better labeling with antibody tags and nanoscale imaging on conventional microscopes. Here, we report multiplexed expansion revealing (multiExR), which enables high-fidelity antibody visualization of >20 proteins in the same specimen, over serial rounds of staining and imaging. Across all datasets examined, multiExR exhibits a median round-to-round registration error of 39 nm, with a median registration error of 25 nm when the most stringent form of the protocol is used. We precisely map 23 proteins in the brain of 5xFAD Alzheimer's model mice, and find reductions in synaptic protein cluster volume, and co-localization of specific AMPA receptor subunits with amyloid-beta nanoclusters. We visualize 20 synaptic proteins in specimens of mouse primary somatosensory cortex. multiExR may be of broad use in analyzing how different kinds of protein are organized amidst normal and pathological processes in biology.

摘要

在许多生理环境和疾病状态下,蛋白质在纳米结构中共同发挥作用。我们最近开发了扩展揭示(ExR)技术,该技术可以将蛋白质彼此分离,以支持使用抗体标签进行更好的标记和在传统显微镜上进行纳米级成像。在这里,我们报告了多重扩展揭示(multiExR)技术,该技术能够在同一样本中对超过 20 种蛋白质进行高保真度的抗体可视化,经过多次染色和成像。在所有检查的数据集上,multiExR 表现出 39nm 的中位数轮次间注册误差,当使用最严格的协议形式时,中位数注册误差为 25nm。我们精确地绘制了 5xFAD 阿尔茨海默病模型小鼠大脑中的 23 种蛋白质,发现突触蛋白簇体积减少,特定 AMPA 受体亚基与淀粉样β纳米簇共定位。我们在小鼠初级体感皮层的标本中可视化了 20 种突触蛋白。multiExR 可能在分析不同类型的蛋白质在生物学正常和病理过程中的组织方式方面具有广泛的用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f17f/11550395/a1fe75f9ebbc/41467_2024_53729_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验