Suppr超能文献

EF-G 结合核糖体的快速动态模式。

A fast dynamic mode of the EF-G-bound ribosome.

机构信息

Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA.

出版信息

EMBO J. 2010 Feb 17;29(4):770-81. doi: 10.1038/emboj.2009.384. Epub 2009 Dec 24.

Abstract

A key intermediate in translocation is an 'unlocked state' of the pre-translocation ribosome in which the P-site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two- and three-colour smFRET imaging from multiple structural perspectives, EF-G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF-G-bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control.

摘要

易位的关键中间态是前易位核糖体的“解锁状态”,在此状态下 P 位 tRNA 采用 P/E 杂交态,L1 茎部结构域关闭,核糖体亚基呈棘轮式构型。在此,通过从多个结构角度的双色和三色 smFRET 成像,显示 EF-G 可加速核糖体中的结构和动力学途径,从而导致这种转变。EF-G 结合的核糖体在本质上仍保持高度动态,其中解锁状态是短暂且可逆形成的。P/E 杂交态在能量上是有利的,但与经典的 P/P 构型的交换仍然存在;L1 茎部呈现快速动态模式,特征是快速的关闭和打开循环。这些数据支持这样一种模型,即 P/E 杂交态的形成、L1 茎部的关闭和亚基的棘轮作用是松散偶联的、独立的过程,必须收敛以达到解锁状态。这些运动的高度动态特性及其对核糖体构象和组成变化的敏感性表明,调节这种中间状态的形成可能是翻译控制的有效途径。

相似文献

1
A fast dynamic mode of the EF-G-bound ribosome.
EMBO J. 2010 Feb 17;29(4):770-81. doi: 10.1038/emboj.2009.384. Epub 2009 Dec 24.
2
Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation.
Mol Cell. 2008 May 9;30(3):348-59. doi: 10.1016/j.molcel.2008.03.012.
3
Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15702-7. doi: 10.1073/pnas.0908077106. Epub 2009 Aug 27.
4
Insights into the molecular determinants of EF-G catalyzed translocation.
RNA. 2011 Dec;17(12):2189-200. doi: 10.1261/rna.029033.111. Epub 2011 Oct 27.
5
Single-molecule structural dynamics of EF-G--ribosome interaction during translocation.
Biochemistry. 2007 Sep 25;46(38):10767-75. doi: 10.1021/bi700657d. Epub 2007 Aug 30.
6
Conformational changes of elongation factor G on the ribosome during tRNA translocation.
Cell. 2015 Jan 15;160(1-2):219-27. doi: 10.1016/j.cell.2014.11.049.
7
Structure of ratcheted ribosomes with tRNAs in hybrid states.
Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16924-7. doi: 10.1073/pnas.0809587105. Epub 2008 Oct 29.
8
Single-molecule fluorescence measurements of ribosomal translocation dynamics.
Mol Cell. 2011 May 6;42(3):367-77. doi: 10.1016/j.molcel.2011.03.024.
9
Structural basis for ribosome recycling by RRF and tRNA.
Nat Struct Mol Biol. 2020 Jan;27(1):25-32. doi: 10.1038/s41594-019-0350-7. Epub 2019 Dec 23.

引用本文的文献

1
Dynamic energy conversion in protein catalysis: From brownian motion to enzymatic function.
Comput Struct Biotechnol J. 2025 Jul 30;27:3337-3369. doi: 10.1016/j.csbj.2025.07.050. eCollection 2025.
3
Increasing the accuracy of single-molecule data analysis using tMAVEN.
Biophys J. 2024 Sep 3;123(17):2765-2780. doi: 10.1016/j.bpj.2024.01.022. Epub 2024 Jan 24.
4
Partial spontaneous intersubunit rotations in pretranslocation ribosomes.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2114979120. doi: 10.1073/pnas.2114979120. Epub 2023 Oct 6.
5
Increasing the accuracy of single-molecule data analysis using tMAVEN.
bioRxiv. 2024 Jan 21:2023.08.15.553409. doi: 10.1101/2023.08.15.553409.
6
Sordarin bound eEF2 unlocks spontaneous forward and reverse translocation on CrPV IRES.
Nucleic Acids Res. 2023 Jul 21;51(13):6999-7013. doi: 10.1093/nar/gkad476.
7
Entropic control of the free-energy landscape of an archetypal biomolecular machine.
Proc Natl Acad Sci U S A. 2023 May 23;120(21):e2220591120. doi: 10.1073/pnas.2220591120. Epub 2023 May 15.
8
Machines on Genes through the Computational Microscope.
J Chem Theory Comput. 2023 Apr 11;19(7):1945-1964. doi: 10.1021/acs.jctc.2c01313. Epub 2023 Mar 22.
9
The cyclic octapeptide antibiotic argyrin B inhibits translation by trapping EF-G on the ribosome during translocation.
Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2114214119. doi: 10.1073/pnas.2114214119. Epub 2022 May 2.
10
tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis.
Cell Rep. 2018 Dec 4;25(10):2676-2688.e7. doi: 10.1016/j.celrep.2018.11.040.

本文引用的文献

1
Spontaneous formation of the unlocked state of the ribosome is a multistep process.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):709-14. doi: 10.1073/pnas.0908597107. Epub 2009 Dec 17.
2
The structure of the ribosome with elongation factor G trapped in the posttranslocational state.
Science. 2009 Oct 30;326(5953):694-9. doi: 10.1126/science.1179709.
3
Navigating the ribosome's metastable energy landscape.
Trends Biochem Sci. 2009 Aug;34(8):390-400. doi: 10.1016/j.tibs.2009.04.004. Epub 2009 Aug 3.
4
Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling.
Nat Struct Mol Biol. 2009 Aug;16(8):861-8. doi: 10.1038/nsmb.1622. Epub 2009 Jul 13.
5
GTP hydrolysis by IF2 guides progression of the ribosome into elongation.
Mol Cell. 2009 Jul 10;35(1):37-47. doi: 10.1016/j.molcel.2009.06.008.
6
The ribosome as a conveying thermal ratchet machine.
J Biol Chem. 2009 Aug 7;284(32):21103-19. doi: 10.1074/jbc.X109.001552. Epub 2009 May 5.
7
Distinct functions of elongation factor G in ribosome recycling and translocation.
RNA. 2009 May;15(5):772-80. doi: 10.1261/rna.1592509. Epub 2009 Mar 26.
8
Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging.
Biophys J. 2009 Mar 18;96(6):2371-81. doi: 10.1016/j.bpj.2008.11.061.
9
Following movement of the L1 stalk between three functional states in single ribosomes.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2571-6. doi: 10.1073/pnas.0813180106. Epub 2009 Feb 3.
10
Ribosomal translocation: one step closer to the molecular mechanism.
ACS Chem Biol. 2009 Feb 20;4(2):93-107. doi: 10.1021/cb8002946.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验