Hamelin Frédéric M, Lewis Mark A
Centre for Mathematical Biology, Mathematical and Statistical Sciences, University of Alberta, 632 Central Academic Building, Edmonton, AB, T6G 2G1, Canada.
J Math Biol. 2010 Nov;61(5):665-94. doi: 10.1007/s00285-009-0316-1. Epub 2009 Dec 22.
In this paper, elements of differential game theory are used to analyze a spatially explicit home range model for interacting wolf packs when movement behavior is uncertain. The model consists of a system of partial differential equations whose parameters reflect the movement behavior of individuals within each pack and whose steady-state solutions describe the patterns of space-use associated to each pack. By controlling the behavioral parameters in a spatially-dynamic fashion, packs adjust their patterns of movement so as to find a Nash-optimal balance between spreading their territory and avoiding conflict with hostile neighbors. On the mathematical side, we show that solving a nonzero-sum differential game corresponds to finding a non-invasible function-valued trait. From the ecological standpoint, when movement behavior is uncertain, the resulting evolutionarily stable equilibrium gives rise to a buffer-zone, or a no-wolf's land where deer are known to find refuge.
在本文中,当运动行为不确定时,微分博弈论的元素被用于分析相互作用的狼群的空间明确的家域模型。该模型由一个偏微分方程组组成,其参数反映了每个狼群内个体的运动行为,其稳态解描述了与每个狼群相关的空间利用模式。通过以空间动态的方式控制行为参数,狼群调整它们的运动模式,以便在扩张领地和避免与敌对邻居冲突之间找到纳什最优平衡。在数学方面,我们表明求解一个非零和微分博弈对应于找到一个不可入侵的函数值特征。从生态学的角度来看,当运动行为不确定时,由此产生的进化稳定均衡会形成一个缓冲区,或者一个已知鹿会在此避难的无狼地带。