Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA.
Biomed Microdevices. 2010 Apr;12(2):287-96. doi: 10.1007/s10544-009-9384-7.
Biophysical cues encoded in the extracellular matrix (ECM) are increasingly being explored to control cell behavior in tissue engineering applications. Recently, we showed that cell adhesion to microtopographical structures ("micropegs") can suppress proliferation in a manner that may be blunted by inhibiting cellular contractility, suggesting that this effect is related to altered cell-scaffold mechanotransduction. We now directly investigate this possibility at the microscale through a combination of live-cell imaging, single-cell mechanics methods, and analysis of gene expression. Using time-lapse imaging, we show that when cells break adhesive contacts with micropegs, they form F-actin-filled tethers that extend and then rupture at a maximum, critical length that is greater than trailing-edge tethers observed on topographically flat substrates. This critical tether length depends on myosin activation, with inhibition of Rho-associated kinase abolishing topography-dependent differences in tether length. Using cellular de-adhesion and atomic force microscopy indentation measurements, we show that the micropegs enhance cell-scaffold adhesive interactions without changing whole-cell elasticity. Moreover, micropeg adhesion increases expression of specific mechanotransductive genes, including RhoA GTPase and myosin heavy chain II, and, in myoblasts, the functional marker connexin 43. Together, our data support a model in which microtopographical cues alter the local mechanical microenvironment of cells by modulating adhesion and adhesion-dependent mechanotransductive signaling.
生物物理线索编码在细胞外基质(ECM)中,越来越多地被用于控制组织工程应用中的细胞行为。最近,我们表明,细胞黏附到微形貌结构(“微柱”)上可以抑制增殖,而这种抑制作用可能会被抑制细胞收缩性所削弱,这表明这种效应与改变细胞-支架机械转导有关。我们现在通过活细胞成像、单细胞力学方法和基因表达分析的组合,直接在微观尺度上研究这种可能性。通过延时成像,我们表明当细胞与微柱的黏附接触断裂时,它们形成充满 F-肌动蛋白的系绳,这些系绳延伸,然后在大于在地形平坦基底上观察到的后缘系绳的最大临界长度处破裂。这种临界系绳长度取决于肌球蛋白的激活,Rho 相关激酶的抑制消除了系绳长度与地形依赖的差异。通过细胞去黏附和原子力显微镜压痕测量,我们表明微柱增强了细胞-支架的黏附相互作用,而不改变整个细胞的弹性。此外,微柱黏附增加了特定机械转导基因的表达,包括 RhoA GTPase 和肌球蛋白重链 II,并且在成肌细胞中,功能标记连接蛋白 43。总的来说,我们的数据支持这样一种模型,即微形貌线索通过调节黏附和黏附依赖性机械转导信号来改变细胞的局部机械微环境。