de Peppo Giuseppe Maria, Agheli Hossein, Karlsson Camilla, Ekström Karin, Brisby Helena, Lennerås Maria, Gustafsson Stefan, Sjövall Peter, Johansson Anna, Olsson Eva, Lausmaa Jukka, Thomsen Peter, Petronis Sarunas
The New York Stem Cell Foundation Research Institute, New York, NY, USA ; Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden.
Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden.
Int J Nanomedicine. 2014 May 22;9:2499-515. doi: 10.2147/IJN.S58805. eCollection 2014.
Patterning medical devices at the nanoscale level enables the manipulation of cell behavior and tissue regeneration, with topographic features recognized as playing a significant role in the osseointegration of implantable devices.
In this study, we assessed the ability of titanium-coated hemisphere-like topographic nanostructures of different sizes (approximately 50, 100, and 200 nm) to influence the morphology, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs).
We found that the proliferation and osteogenic differentiation of hMSCs was influenced by the size of the underlying structures, suggesting that size variations in topographic features at the nanoscale level, independently of chemistry, can be exploited to control hMSC behavior in a size-dependent fashion.
Our studies demonstrate that colloidal lithography, in combination with coating technologies, can be exploited to investigate the cell response to well defined nanoscale topography and to develop next-generation surfaces that guide tissue regeneration and promote implant integration.
在纳米尺度上对医疗设备进行图案化处理能够操控细胞行为和组织再生,其中地形特征被认为在可植入设备的骨整合中发挥着重要作用。
在本研究中,我们评估了不同尺寸(约50、100和200纳米)的钛涂层半球状地形纳米结构影响人间充质干细胞(hMSCs)形态、增殖和成骨分化的能力。
我们发现hMSCs的增殖和成骨分化受底层结构尺寸的影响,这表明纳米尺度上地形特征的尺寸变化,与化学性质无关,可被用于以尺寸依赖的方式控制hMSC行为。
我们的研究表明,胶体光刻技术与涂层技术相结合,可用于研究细胞对明确的纳米尺度地形的反应,并开发引导组织再生和促进植入物整合的下一代表面。