Suppr超能文献

基于模型的脑移位图像更新在深部脑刺激电极植入术中的应用。

Model-Based Image Updating for Brain Shift in Deep Brain Stimulation Electrode Placement Surgery.

出版信息

IEEE Trans Biomed Eng. 2020 Dec;67(12):3542-3552. doi: 10.1109/TBME.2020.2990669. Epub 2020 Nov 19.

Abstract

OBJECTIVE

The efficacy of deep brain stimulation (DBS) depends on accurate placement of electrodes. Although stereotactic frames enable co-registration of image-based surgical planning and the operative field, the accuracy of electrode placement can be degraded by intra-operative brain shift. In this study, we adapted a biomechanical model to estimate whole brain displacements from which we deformed preoperative CT (preCT) to generate an updated CT (uCT) that compensates for brain shift.

METHODS

We drove the deformation model using displacement data derived from deformation in the frontal cortical surface that occurred during the DBS intervention. We evaluated 15 patients, retrospectively, who underwent bilateral DBS surgery, and assessed the accuracy of uCT in terms of target registration error (TRE) relative to a CT acquired post-placement (postCT). We further divided subjects into large (Group L) and small (Group S) deformation groups based on a TRE threshold of 1.6mm. Anterior commissure (AC), posterior commissure (PC) and pineal gland (PG) were identified on preCT and postCT and used to quantify TREs in preCT and uCT.

RESULTS

In the group of large brain deformation, average TREs for uCT were 1.11 ± 0.13 and 1.07 ± 0.38 mm at AC and PC, respectively, compared to 1.85 ± 0.17 and 0.92 ± 0.52 mm for preCT. The model updating approach improved AC localization but did not alter TREs at PC.

CONCLUSION

This preliminary study suggests that our image updating method may compensate for brain shift around surgical targets of importance during DBS surgery, although further investigation is warranted before conclusive evidence will be available.

SIGNIFICANCE

With further development and evaluation, our model-based image updating method using intraoperative sparse data may compensate for brain shift in DBS surgery efficiently, and have utility in updating targeting coordinates.

摘要

目的

深部脑刺激(DBS)的疗效取决于电极的准确放置。尽管立体定向框架可以实现基于图像的手术计划和手术区域的配准,但电极放置的准确性可能会因术中脑移位而降低。在这项研究中,我们改编了一个生物力学模型,以从整体脑位移估计中得出,我们通过该位移来对术前 CT(preCT)进行变形,以生成补偿脑移位的更新 CT(uCT)。

方法

我们使用从 DBS 干预过程中发生的额皮质表面变形中得出的位移数据来驱动变形模型。我们回顾性地评估了 15 名接受双侧 DBS 手术的患者,并根据相对于放置后 CT(postCT)的目标注册误差(TRE)评估了 uCT 的准确性。我们还根据 1.6mm 的 TRE 阈值将患者分为大脑变形大(Group L)和小(Group S)组。在前 CT 和 postCT 上识别前联合(AC)、后联合(PC)和松果体(PG),并用于在 preCT 和 uCT 中量化 TRE。

结果

在大脑变形大的组中,uCT 的平均 TRE 分别为 AC 和 PC 处的 1.11 ± 0.13mm 和 1.07 ± 0.38mm,而 preCT 分别为 1.85 ± 0.17mm 和 0.92 ± 0.52mm。该模型更新方法改善了 AC 的定位,但没有改变 PC 处的 TRE。

结论

这项初步研究表明,我们的图像更新方法可能可以补偿 DBS 手术过程中重要手术靶点周围的脑移位,尽管在获得确凿的证据之前还需要进一步的研究。

意义

随着进一步的开发和评估,我们使用术中稀疏数据的基于模型的图像更新方法可以有效地补偿 DBS 手术中的脑移位,并在更新靶向坐标方面具有实用性。

相似文献

3
Intraoperative image updating for brain shift following dural opening.硬脑膜打开后脑移位的术中图像更新。
J Neurosurg. 2017 Jun;126(6):1924-1933. doi: 10.3171/2016.6.JNS152953. Epub 2016 Sep 9.

本文引用的文献

2
Image Updating for Brain Shift Compensation During Resection.脑移位补偿术中的图像更新。
Oper Neurosurg (Hagerstown). 2018 Apr 1;14(4):402-411. doi: 10.1093/ons/opx123.
4
Intraoperative image updating for brain shift following dural opening.硬脑膜打开后脑移位的术中图像更新。
J Neurosurg. 2017 Jun;126(6):1924-1933. doi: 10.3171/2016.6.JNS152953. Epub 2016 Sep 9.
7
Brain shift during bur hole-based procedures using interventional MRI.基于介入性 MRI 的颅骨钻孔术中的脑移位。
J Neurosurg. 2014 Jul;121(1):149-60. doi: 10.3171/2014.3.JNS121312. Epub 2014 May 2.
9
3D Slicer as an image computing platform for the Quantitative Imaging Network.3D Slicer 作为定量成像网络的图像计算平台。
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验