Suppr超能文献

基于模型的深部脑刺激中的图像更新,结合深部脑稀疏数据的同化。

Model-based image updating in deep brain stimulation with assimilation of deep brain sparse data.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA.

Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA.

出版信息

Med Phys. 2023 Dec;50(12):7904-7920. doi: 10.1002/mp.16578. Epub 2023 Jul 7.

Abstract

BACKGROUND

Accuracy of electrode placement for deep brain stimulation (DBS) is critical to achieving desired surgical outcomes and impacts the efficacy of treating neurodegenerative diseases. Intraoperative brain shift degrades the accuracy of surgical navigation based on preoperative images.

PURPOSE

We extended a model-based image updating scheme to address intraoperative brain shift in DBS surgery and improved its accuracy in deep brain.

METHODS

We evaluated 10 patients, retrospectively, who underwent bilateral DBS surgery and classified them into groups of large and small deformation based on a 2 mm subsurface movement threshold and brain shift index of 5%. In each case, sparse brain deformation data were used to estimate whole brain displacements and deform preoperative CT (preCT) to generate updated CT (uCT). Accuracy of uCT was assessed using target registration errors (TREs) at the Anterior Commissure (AC), Posterior Commissure (PC), and four calcification points in the sub-ventricular area by comparing their locations in uCT with their ground truth counterparts in postoperative CT (postCT).

RESULTS

In the large deformation group, TREs were reduced from 2.5 mm in preCT to 1.2 mm in uCT (53% compensation); in the small deformation group, errors were reduced from 1.25 to 0.74 mm (41%). Average reduction of TREs at AC, PC and pineal gland were significant, statistically (p ⩽ 0.01).

CONCLUSIONS

With more rigorous validation of model results, this study confirms the feasibility of improving the accuracy of model-based image updating in compensating for intraoperative brain shift during DBS procedures by assimilating deep brain sparse data.

摘要

背景

脑深部刺激(DBS)电极位置的准确性对于获得理想的手术效果至关重要,并且影响治疗神经退行性疾病的疗效。术中脑移位会降低基于术前图像的手术导航的准确性。

目的

我们扩展了基于模型的图像更新方案,以解决 DBS 手术中的术中脑移位问题,并提高其在深部脑中的准确性。

方法

我们回顾性评估了 10 名接受双侧 DBS 手术的患者,并根据 2 毫米的表面下运动阈值和 5%的脑移位指数将他们分为大变形组和小变形组。在每种情况下,稀疏的脑变形数据用于估计整个脑位移,并对术前 CT(preCT)进行变形以生成更新的 CT(uCT)。通过比较 uCT 中前连合(AC)、后连合(PC)和侧脑室下四个钙化点的位置与术后 CT(postCT)中这些点的真实位置,使用目标注册误差(TRE)来评估 uCT 的准确性。

结果

在大变形组中,TRE 从 preCT 的 2.5 毫米减少到 uCT 的 1.2 毫米(补偿 53%);在小变形组中,误差从 1.25 毫米减少到 0.74 毫米(41%)。AC、PC 和松果体处的 TRE 平均减少具有统计学意义(p ⩽ 0.01)。

结论

通过更严格地验证模型结果,本研究证实了通过吸收深部脑稀疏数据,改进基于模型的图像更新方案在补偿 DBS 手术中术中脑移位的准确性是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验