Institute for Data Analysis and Visualization, Department of Computer Science, University of California, Davis, CA, USA.
Int J Comput Assist Radiol Surg. 2010 Mar;5(2):125-31. doi: 10.1007/s11548-009-0302-5. Epub 2009 Apr 15.
The structure of fiber tracts in DT-MRI data presents a challenging problem for visualization and analysis. We derive visualization of such traces from a local coherence measure and achieve much improved visual segmentation.
We introduce a coherence measure defined for fiber tracts. This quantitative assessment is based on infinitesimal deviations of neighboring tracts and allows identification and segmentation of coherent fiber regions. We use a hardware-accelerated implementation to achieve interactive visualization on slices and provide several approaches to visualize coherence information. Furthermore, we enhance existing techniques by combining them with coherence.
We demonstrate our method on both a canine heart, where the myocardial structure is visualized, and a human brain, where we achieve detailed visualization of major and minor fiber bundles in a quality similar to and exceeding fiber clustering approaches.
Our approach allows detailed and fast visualization of important anatomical structures in DT-MRI data sets.
DT-MRI 数据中的纤维束结构对于可视化和分析来说是一个具有挑战性的问题。我们从局部相干性度量中推导出这些轨迹的可视化,并实现了大大改善的视觉分割。
我们引入了一种针对纤维束的相干性度量。这种定量评估基于相邻轨迹的微小偏差,并允许识别和分割相干纤维区域。我们使用硬件加速实现来实现切片上的交互式可视化,并提供了几种可视化相干信息的方法。此外,我们通过将它们与相干性相结合来增强现有的技术。
我们在犬的心脏和人的大脑上展示了我们的方法,在心脏上可以可视化心肌结构,在大脑上可以实现主要和次要纤维束的详细可视化,其质量与纤维聚类方法相当,甚至超过了纤维聚类方法。
我们的方法允许在 DT-MRI 数据集上快速详细地可视化重要的解剖结构。