Suppr超能文献

运动皮层损伤后恢复过程中来自辅助运动皮层的皮质脊髓投射的选择性长期重组。

Selective long-term reorganization of the corticospinal projection from the supplementary motor cortex following recovery from lateral motor cortex injury.

机构信息

The University of South Dakota, Vermillion, 57069, USA.

出版信息

J Comp Neurol. 2010 Mar 1;518(5):586-621. doi: 10.1002/cne.22218.

Abstract

Brain injury affecting the frontal motor cortex or its descending axons often causes contralateral upper extremity paresis. Although recovery is variable, the underlying mechanisms supporting favorable motor recovery remain unclear. Because the medial wall of the cerebral hemisphere is often spared following brain injury and recent functional neuroimaging studies in patients indicate a potential role for this brain region in the recovery process, we investigated the long-term effects of isolated lateral frontal motor cortical injury on the corticospinal projection (CSP) from intact, ipsilesional supplementary motor cortex (M2). After injury to the arm region of the primary motor (M1) and lateral premotor (LPMC) cortices, upper extremity recovery is accompanied by terminal axon plasticity in the contralateral CSP but not the ipsilateral CSP from M2. Furthermore, significant contralateral plasticity occurs only in lamina VII and dorsally within lamina IX. Thus, selective intraspinal sprouting transpires in regions containing interneurons, flexor-related motor neurons, and motor neurons supplying intrinsic hand muscles, which all play important roles in mediating reaching and digit movements. After recovery, subsequent injury of M2 leads to reemergence of hand motor deficits. Considering the importance of the CSP in humans and the common occurrence of lateral frontal cortex injury, these findings suggest that spared supplementary motor cortex may serve as an important therapeutic target that should be considered when designing acute and long-term postinjury patient intervention strategies aimed to enhance the motor recovery process following lateral cortical trauma.

摘要

大脑损伤影响额叶运动皮质或其下行轴突,常导致对侧上肢瘫痪。尽管恢复情况各不相同,但支持有利运动恢复的潜在机制仍不清楚。由于大脑半球的内侧壁在脑损伤后通常不受影响,并且最近对患者的功能性神经影像学研究表明该脑区在恢复过程中具有潜在作用,因此我们研究了孤立的外侧额叶运动皮质损伤对来自完整对侧辅助运动皮质(M2)的皮质脊髓投射(CSP)的长期影响。在损伤主要运动(M1)和外侧前运动(LPMC)皮质的手臂区域后,上肢恢复伴随着对侧 CSP 的终末轴突可塑性,但对来自 M2 的同侧 CSP 没有影响。此外,仅在 VII 层和 IX 层的背侧出现显著的对侧可塑性。因此,选择性的脊髓内发芽发生在包含中间神经元、屈肌相关运动神经元和供应内在手部肌肉的运动神经元的区域,这些神经元在介导伸手和手指运动中都起着重要作用。恢复后,M2 的后续损伤会导致手部运动缺陷重新出现。考虑到 CSP 在人类中的重要性以及外侧额叶皮质损伤的常见发生,这些发现表明,受保护的辅助运动皮质可能是一个重要的治疗靶点,在设计旨在增强外侧皮质创伤后运动恢复过程的急性和长期损伤后患者干预策略时应予以考虑。

相似文献

3
Hand Motor Recovery Following Extensive Frontoparietal Cortical Injury Is Accompanied by Upregulated Corticoreticular Projections in Monkey.
J Neurosci. 2018 Jul 11;38(28):6323-6339. doi: 10.1523/JNEUROSCI.0403-18.2018. Epub 2018 Jun 13.
9
Regenerative growth of corticospinal tract axons via the ventral column after spinal cord injury in mice.
J Neurosci. 2008 Jul 2;28(27):6836-47. doi: 10.1523/JNEUROSCI.5372-07.2008.
10

引用本文的文献

3
Corticospinal and corticoreticulospinal projections have discrete but complementary roles in chronic motor behaviors after stroke.
J Neurophysiol. 2024 Dec 1;132(6):1917-1936. doi: 10.1152/jn.00301.2024. Epub 2024 Nov 6.
4
Self-organizing recruitment of compensatory areas maximizes residual motor performance post-stroke.
bioRxiv. 2024 Jul 2:2024.06.28.601213. doi: 10.1101/2024.06.28.601213.
5
Against cortical reorganisation.
Elife. 2023 Nov 21;12:e84716. doi: 10.7554/eLife.84716.
8
The evidence against somatotopic organization of function in the primate corticospinal tract.
Brain. 2023 May 2;146(5):1791-1803. doi: 10.1093/brain/awac496.
9
Understanding them to understand ourselves: The importance of NHP research for translational neuroscience.
Curr Res Neurobiol. 2022 Aug 17;3:100049. doi: 10.1016/j.crneur.2022.100049. eCollection 2022.
10
Characterization of persistent headache attributed to past stroke.
Arq Neuropsiquiatr. 2022 Sep;80(9):893-899. doi: 10.1055/s-0042-1755269. Epub 2022 Nov 9.

本文引用的文献

1
Volumetric effects of motor cortex injury on recovery of dexterous movements.
Exp Neurol. 2009 Nov;220(1):90-108. doi: 10.1016/j.expneurol.2009.07.034. Epub 2009 Aug 10.
3
Selective activation of human finger muscles after stroke or amputation.
Adv Exp Med Biol. 2009;629:559-75. doi: 10.1007/978-0-387-77064-2_30.
4
Axon sprouting in adult mouse spinal cord after motor cortex stroke.
Neurosci Lett. 2009 Jan 30;450(2):191-5. doi: 10.1016/j.neulet.2008.11.017. Epub 2008 Nov 13.
5
The development of stroke therapeutics: promising mechanisms and translational challenges.
Neuropharmacology. 2009 Feb;56(2):329-41. doi: 10.1016/j.neuropharm.2008.10.006. Epub 2008 Nov 1.
6
Chapter 2 Comparative anatomy and physiology of the corticospinal system.
Handb Clin Neurol. 2007;82:15-37. doi: 10.1016/S0072-9752(07)80005-4.
7
Treatment of unruptured arteriovenous malformations in the brain.
J Clin Neurosci. 1998 Mar;5 Suppl:61-4. doi: 10.1016/s0967-5868(98)90015-7.
9
Cortical brain stimulation: a potential therapeutic agent for upper limb motor recovery following stroke.
Top Stroke Rehabil. 2007 Nov-Dec;14(6):54-67. doi: 10.1310/tsr1406-54.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验