Suppr超能文献

单眼剥夺对青少年和成年人突触素磷酸化的差异调节。

Differential regulation of synapsin phosphorylation by monocular deprivation in juveniles and adults.

机构信息

Department of Biology, University of Maryland, College Park, MD 20742, USA.

出版信息

Neuroscience. 2010 Mar 17;166(2):539-50. doi: 10.1016/j.neuroscience.2009.12.043. Epub 2009 Dec 24.

Abstract

The rodent visual cortex retains significant ocular dominance plasticity beyond the traditional postnatal critical period. However, the intracellular mechanisms that underlie the cortical response to monocular deprivation are predicted to be different in juveniles and adults. Here we show monocular deprivation in adult, but not juvenile rats, induced an increase in the phosphorylation of the prominent presynaptic effecter protein synapsin at two key sites known to regulate synapsin function. Monocular deprivation in adults induced an increase in synapsin phosphorylation at the PKA consensus site (site 1) and the CaMKII consensus site (site 3) in the visual cortex ipsilateral to the deprived eye, which is dominated by non-deprived eye input. The increase in synapsin phosphorylation was observed in total cortical homogenate, but not synaptoneurosomes, suggesting that the pool of synapsin targeted by monocular deprivation in adults does not co-fractionate with excitatory synapses. Phosphorylation of sites 1 and 3 stimulates the release of synaptic vesicles from a reserve pool and increases in the probability of evoked neurotransmitter release, which may contribute to the strengthening of the non-deprived input characteristic of ocular dominance plasticity in adults.

摘要

啮齿动物视觉皮层在传统的出生后关键期之外仍保持显著的眼优势可塑性。然而,预测在幼体和成年动物中,皮层对单眼剥夺的反应的细胞内机制是不同的。在这里,我们发现在成年大鼠中进行单眼剥夺,但在幼体大鼠中没有,会导致两个已知调节突触素功能的关键位点上突触素前突触效应蛋白的磷酸化增加。在与剥夺眼同侧的视觉皮层中,单眼剥夺诱导 PKA 共识位点(位点 1)和 CaMKII 共识位点(位点 3)处的突触素磷酸化增加,而该部位由非剥夺眼输入主导。突触素磷酸化的增加发生在整个皮质匀浆中,但不在突触小体中,这表明成年动物中单眼剥夺靶向的突触素库与兴奋性突触不共分馏。位点 1 和 3 的磷酸化刺激从储备池中释放突触小泡,并增加诱发神经递质释放的概率,这可能有助于增强成年动物中眼优势可塑性的非剥夺输入的特征。

相似文献

1
Differential regulation of synapsin phosphorylation by monocular deprivation in juveniles and adults.
Neuroscience. 2010 Mar 17;166(2):539-50. doi: 10.1016/j.neuroscience.2009.12.043. Epub 2009 Dec 24.
3
Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex.
J Neurosci. 2006 Mar 15;26(11):2951-5. doi: 10.1523/JNEUROSCI.5554-05.2006.
4
Schwann cells protect against CaMKII- and PKA-dependent Acrylamide-induced Synapsin I phosphorylation.
Brain Res. 2018 Dec 15;1701:18-27. doi: 10.1016/j.brainres.2018.07.019. Epub 2018 Jul 17.
5
Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
Eur J Neurosci. 2008 Aug;28(4):730-43. doi: 10.1111/j.1460-9568.2008.06384.x. Epub 2008 Jul 24.
6
Changes in the distribution of calcium calmodulin-dependent protein kinase II at the presynaptic bouton after depolarization.
Brain Cell Biol. 2006 Jun;35(2-3):117-24. doi: 10.1007/s11068-007-9012-5. Epub 2007 Sep 20.
9
10
cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity.
J Neurosci. 2002 Mar 15;22(6):2237-45. doi: 10.1523/JNEUROSCI.22-06-02237.2002.

引用本文的文献

本文引用的文献

2
Experience leaves a lasting structural trace in cortical circuits.
Nature. 2009 Jan 15;457(7227):313-7. doi: 10.1038/nature07487. Epub 2008 Nov 12.
3
Distinctive features of adult ocular dominance plasticity.
J Neurosci. 2008 Oct 8;28(41):10278-86. doi: 10.1523/JNEUROSCI.2451-08.2008.
4
Age-dependent ocular dominance plasticity in adult mice.
PLoS One. 2008 Sep 1;3(9):e3120. doi: 10.1371/journal.pone.0003120.
5
Synapsin-I- and synapsin-II-null mice display an increased age-dependent cognitive impairment.
J Cell Sci. 2008 Sep 15;121(Pt 18):3042-51. doi: 10.1242/jcs.035063. Epub 2008 Aug 19.
6
Synapsin-dependent development of glutamatergic synaptic vesicles and presynaptic plasticity in postnatal mouse brain.
Neuroscience. 2009 Jan 12;158(1):231-41. doi: 10.1016/j.neuroscience.2008.05.055. Epub 2008 Jun 14.
7
Lack of synapsin I reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses.
J Neurosci. 2007 Dec 5;27(49):13520-31. doi: 10.1523/JNEUROSCI.3151-07.2007.
8
Sequential development of long-term potentiation and depression in different layers of the mouse visual cortex.
J Neurosci. 2007 Sep 5;27(36):9648-52. doi: 10.1523/JNEUROSCI.2655-07.2007.
9
Phosphorylation of synapsin domain A is required for post-tetanic potentiation.
J Cell Sci. 2007 Sep 15;120(Pt 18):3228-37. doi: 10.1242/jcs.012005. Epub 2007 Aug 28.
10
Experience-dependent recovery of vision following chronic deprivation amblyopia.
Nat Neurosci. 2007 Sep;10(9):1134-6. doi: 10.1038/nn1965. Epub 2007 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验