Gu Yu, Tran Trinh, Murase Sachiko, Borrell Andrew, Kirkwood Alfredo, Quinlan Elizabeth M
Neuroscience and Cognitive Science Program, Department of Biology, University of Maryland, College Park, Maryland 20742, and.
Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218.
J Neurosci. 2016 Oct 5;36(40):10285-10295. doi: 10.1523/JNEUROSCI.4242-15.2016.
Maturation of excitatory drive onto fast-spiking interneurons (FS INs) in the visual cortex has been implicated in the control of the timing of the critical period for ocular dominance plasticity. However, the mechanisms that regulate the strength of these synapses over cortical development are not understood. Here we use a mouse model to show that neuregulin (NRG) and the receptor tyrosine kinase erbB4 regulate the timing of the critical period. NRG1 enhanced the strength of excitatory synapses onto FS INs, which inhibited ocular dominance plasticity during the critical period but rescued plasticity in transgenics with hypoexcitable FS INs. Blocking the effects of endogenous neuregulin via inhibition of erbBs rescued ocular dominance plasticity in postcritical period adults, allowing recovery from amblyopia induced by chronic monocular deprivation. Thus, the strength of excitation onto FS INs is a key determinant of critical period plasticity and is maintained at high levels by NRG-erbB4 signaling to constrain plasticity in adulthood.
Despite decades of experimentation, the mechanisms by which critical periods of enhanced synaptic plasticity are initiated and terminated are not completely understood. Here we show that neuregulin (NRG) and the receptor tyrosine kinase erbB4 determine critical period timing by controlling the strength of excitatory synapses onto FS INs. NRG1 enhanced excitatory drive onto fast spiking interneurons, which inhibited ocular dominance plasticity in juveniles but rescued plasticity in transgenics with hypoexcitable FS INs. Blocking the effects of endogenous neuregulin via inhibition of erbBs rescued ocular dominance plasticity in adults, allowing recovery from amblyopia induced by chronic monocular deprivation. Thus, in contrast to prevailing views of the termination of the critical period, active maintenance of strong excitation onto FS INs constrains plasticity in adults.
视觉皮层中快突触中间神经元(FS 中间神经元)上兴奋性驱动的成熟与眼优势可塑性关键期的时间控制有关。然而,在皮层发育过程中调节这些突触强度的机制尚不清楚。在这里,我们使用小鼠模型表明神经调节蛋白(NRG)和受体酪氨酸激酶 erbB4 调节关键期的时间。NRG1 增强了 FS 中间神经元上兴奋性突触的强度,这在关键期抑制了眼优势可塑性,但在 FS 中间神经元兴奋性降低的转基因小鼠中挽救了可塑性。通过抑制 erbBs 阻断内源性神经调节蛋白的作用,在关键期后的成年小鼠中挽救了眼优势可塑性,使它们从慢性单眼剥夺诱导的弱视中恢复。因此,FS 中间神经元上的兴奋强度是关键期可塑性的关键决定因素,并通过 NRG-erbB4 信号通路维持在高水平,以限制成年期的可塑性。
尽管经过了数十年的实验,但增强突触可塑性的关键期开始和终止的机制仍未完全了解。在这里,我们表明神经调节蛋白(NRG)和受体酪氨酸激酶 erbB4 通过控制 FS 中间神经元上兴奋性突触的强度来决定关键期的时间。NRG1 增强了对快突触中间神经元的兴奋性驱动,这在幼年小鼠中抑制了眼优势可塑性,但在 FS 中间神经元兴奋性降低的转基因小鼠中挽救了可塑性。通过抑制 erbBs 阻断内源性神经调节蛋白的作用,在成年小鼠中挽救了眼优势可塑性,使它们从慢性单眼剥夺诱导的弱视中恢复。因此,与关键期终止的主流观点相反,FS 中间神经元上强烈兴奋的主动维持限制了成年期的可塑性。