Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia.
Neuroimage. 2010 Apr 15;50(3):970-83. doi: 10.1016/j.neuroimage.2009.12.027. Epub 2009 Dec 24.
Whole-brain anatomical connectivity in living humans can be modeled as a network with diffusion-MRI and tractography. Network nodes are associated with distinct grey-matter regions, while white-matter fiber bundles serve as interconnecting network links. However, the lack of a gold standard for regional parcellation in brain MRI makes the definition of nodes arbitrary, meaning that network nodes are defined using templates employing either random or anatomical parcellation criteria. Consequently, the number of nodes included in networks studied by different authors has varied considerably, from less than 100 up to more than 10(4). Here, we systematically and quantitatively assess the behavior, structure and topological attributes of whole-brain anatomical networks over a wide range of nodal scales, a variety of grey-matter parcellations as well as different diffusion-MRI acquisition protocols. We show that simple binary decisions about network organization, such as whether small-worldness or scale-freeness is evident, are unaffected by spatial scale, and that the estimates of various organizational parameters (e.g. small-worldness, clustering, path length, and efficiency) are consistent across different parcellation scales at the same resolution (i.e. the same number of nodes). However, these parameters vary considerably as a function of spatial scale; for example small-worldness exhibited a difference of 95% between the widely-used automated anatomical labeling (AAL) template (approximately 100 nodes) and a 4000-node random parcellation (sigma(AAL)=1.9 vs. sigma(4000)=53.6+/-2.2). These findings indicate that any comparison of network parameters across studies must be made with reference to the spatial scale of the nodal parcellation.
活体人类全脑解剖连通性可以建模为一个具有扩散 MRI 和束流追踪的网络。网络节点与不同的灰质区域相关联,而白质纤维束则作为网络连接的纽带。然而,由于脑 MRI 中区域分割的金标准缺失,使得节点的定义具有任意性,这意味着网络节点是使用基于随机或解剖分割标准的模板来定义的。因此,不同作者研究的网络中所包含的节点数量差异很大,从不到 100 个到超过 10(4)个不等。在这里,我们系统地和定量地评估了在广泛的节点尺度、各种灰质分割以及不同扩散 MRI 采集方案下,全脑解剖网络的行为、结构和拓扑属性。我们表明,关于网络组织的简单二元决策,例如是否存在小世界或无标度性,不受空间尺度的影响,并且各种组织参数(例如小世界性、聚类、路径长度和效率)的估计在不同的分割尺度上是一致的,只要分辨率相同(即节点数量相同)。然而,这些参数随空间尺度有很大的变化;例如,小世界性在广泛使用的自动解剖标记(AAL)模板(约 100 个节点)和 4000 个节点的随机分割之间存在 95%的差异(AAL 的 sigma 值为 1.9,而 4000 个节点的 sigma 值为 53.6+/-2.2)。这些发现表明,任何跨研究比较网络参数的研究都必须参考节点分割的空间尺度。