Suppr超能文献

基于弥散磁共振成像纤维追踪的纤维聚类技术的脑白质分割的重测信度研究。

Test-retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering.

机构信息

Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.

出版信息

Hum Brain Mapp. 2019 Jul;40(10):3041-3057. doi: 10.1002/hbm.24579. Epub 2019 Mar 15.

Abstract

There are two popular approaches for automated white matter parcellation using diffusion MRI tractography, including fiber clustering strategies that group white matter fibers according to their geometric trajectories and cortical-parcellation-based strategies that focus on the structural connectivity among different brain regions of interest. While multiple studies have assessed test-retest reproducibility of automated white matter parcellations using cortical-parcellation-based strategies, there are no existing studies of test-retest reproducibility of fiber clustering parcellation. In this work, we perform what we believe is the first study of fiber clustering white matter parcellation test-retest reproducibility. The assessment is performed on three test-retest diffusion MRI datasets including a total of 255 subjects across genders, a broad age range (5-82 years), health conditions (autism, Parkinson's disease and healthy subjects), and imaging acquisition protocols (three different sites). A comprehensive evaluation is conducted for a fiber clustering method that leverages an anatomically curated fiber clustering white matter atlas, with comparison to a popular cortical-parcellation-based method. The two methods are compared for the two main white matter parcellation applications of dividing the entire white matter into parcels (i.e., whole brain white matter parcellation) and identifying particular anatomical fiber tracts (i.e., anatomical fiber tract parcellation). Test-retest reproducibility is measured using both geometric and diffusion features, including volumetric overlap (wDice) and relative difference of fractional anisotropy. Our experimental results in general indicate that the fiber clustering method produced more reproducible white matter parcellations than the cortical-parcellation-based method.

摘要

有两种使用扩散 MRI 轨迹追踪自动进行白质分割的流行方法,包括根据白质纤维的几何轨迹对其进行分组的纤维聚类策略,以及专注于不同脑区之间结构连通性的皮质分割策略。虽然多项研究已经评估了基于皮质分割策略的自动白质分割的测试-重测可重复性,但尚无纤维聚类分割的测试-重测可重复性的现有研究。在这项工作中,我们进行了我们认为是首次纤维聚类白质分割测试-重测可重复性的研究。该评估是在三个测试-重测扩散 MRI 数据集上进行的,共包括 255 名跨性别、广泛年龄范围(5-82 岁)、健康状况(自闭症、帕金森病和健康受试者)和成像采集方案(三个不同地点)的受试者。我们对一种利用解剖学精心制作的纤维聚类白质图谱的纤维聚类方法进行了全面评估,并与一种流行的基于皮质分割的方法进行了比较。这两种方法在将整个白质划分为多个区域的两个主要白质分割应用中进行了比较(即整个大脑白质分割)和识别特定的解剖纤维束(即解剖纤维束分割)。使用几何和扩散特征(包括体积重叠(wDice)和各向异性分数的相对差异)来衡量测试-重测可重复性。我们的实验结果总体表明,纤维聚类方法产生的白质分割比基于皮质分割的方法更具可重复性。

相似文献

1
Test-retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering.
Hum Brain Mapp. 2019 Jul;40(10):3041-3057. doi: 10.1002/hbm.24579. Epub 2019 Mar 15.
2
An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan.
Neuroimage. 2018 Oct 1;179:429-447. doi: 10.1016/j.neuroimage.2018.06.027. Epub 2018 Jun 18.
5
Fiber clustering versus the parcellation-based connectome.
Neuroimage. 2013 Oct 15;80:283-9. doi: 10.1016/j.neuroimage.2013.04.066. Epub 2013 Apr 28.
6
A comparison of three fiber tract delineation methods and their impact on white matter analysis.
Neuroimage. 2018 Sep;178:318-331. doi: 10.1016/j.neuroimage.2018.05.044. Epub 2018 May 19.
7
Automated white matter fiber tract identification in patients with brain tumors.
Neuroimage Clin. 2016 Nov 25;13:138-153. doi: 10.1016/j.nicl.2016.11.023. eCollection 2017.
8
Effects of diffusion signal modeling and segmentation approaches on subthalamic nucleus parcellation.
Neuroimage. 2022 Apr 15;250:118959. doi: 10.1016/j.neuroimage.2022.118959. Epub 2022 Feb 3.
9
Investigation of local white matter abnormality in Parkinson's disease by using an automatic fiber tract parcellation.
Behav Brain Res. 2020 Sep 15;394:112805. doi: 10.1016/j.bbr.2020.112805. Epub 2020 Jul 13.

引用本文的文献

3
Brain-cognition relationships and treatment outcome in treatment-resistant late-life depression.
Res Sq. 2025 Jun 3:rs.3.rs-6340032. doi: 10.21203/rs.3.rs-6340032/v1.
8
Facial Nerve Tractography Using Diffusion MRI: A Comparison of Acquisition b -Values and Single- and Multifiber Tracking Strategies.
Otol Neurotol. 2024 Oct 1;45(9):e647-e654. doi: 10.1097/MAO.0000000000004310. Epub 2024 Sep 5.

本文引用的文献

1
An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan.
Neuroimage. 2018 Oct 1;179:429-447. doi: 10.1016/j.neuroimage.2018.06.027. Epub 2018 Jun 18.
3
A comparison of three fiber tract delineation methods and their impact on white matter analysis.
Neuroimage. 2018 Sep;178:318-331. doi: 10.1016/j.neuroimage.2018.05.044. Epub 2018 May 19.
4
Population-averaged atlas of the macroscale human structural connectome and its network topology.
Neuroimage. 2018 Sep;178:57-68. doi: 10.1016/j.neuroimage.2018.05.027. Epub 2018 May 24.
6
The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites.
Dev Cogn Neurosci. 2018 Aug;32:43-54. doi: 10.1016/j.dcn.2018.03.001. Epub 2018 Mar 14.
7
Diffusion MRI-based cortical connectome reconstruction: dependency on tractography procedures and neuroanatomical characteristics.
Brain Struct Funct. 2018 Jun;223(5):2269-2285. doi: 10.1007/s00429-018-1628-y. Epub 2018 Feb 20.
8
Probing the reproducibility of quantitative estimates of structural connectivity derived from global tractography.
Neuroimage. 2018 Jul 15;175:215-229. doi: 10.1016/j.neuroimage.2018.01.086. Epub 2018 Feb 10.
9
The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction.
Neuroimage. 2018 Jun;173:88-112. doi: 10.1016/j.neuroimage.2018.01.054. Epub 2018 Jan 31.
10
Mapping population-based structural connectomes.
Neuroimage. 2018 May 15;172:130-145. doi: 10.1016/j.neuroimage.2017.12.064. Epub 2018 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验