Suppr超能文献

人类脑白质网络构建方法的收敛性与发散性:基于个体差异的评估

Convergence and divergence across construction methods for human brain white matter networks: an assessment based on individual differences.

作者信息

Zhong Suyu, He Yong, Gong Gaolang

机构信息

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.

出版信息

Hum Brain Mapp. 2015 May;36(5):1995-2013. doi: 10.1002/hbm.22751. Epub 2015 Jan 30.

Abstract

Using diffusion MRI, a number of studies have investigated the properties of whole-brain white matter (WM) networks with differing network construction methods (node/edge definition). However, how the construction methods affect individual differences of WM networks and, particularly, if distinct methods can provide convergent or divergent patterns of individual differences remain largely unknown. Here, we applied 10 frequently used methods to construct whole-brain WM networks in a healthy young adult population (57 subjects), which involves two node definitions (low-resolution and high-resolution) and five edge definitions (binary, FA weighted, fiber-density weighted, length-corrected fiber-density weighted, and connectivity-probability weighted). For these WM networks, individual differences were systematically analyzed in three network aspects: (1) a spatial pattern of WM connections, (2) a spatial pattern of nodal efficiency, and (3) network global and local efficiencies. Intriguingly, we found that some of the network construction methods converged in terms of individual difference patterns, but diverged with other methods. Furthermore, the convergence/divergence between methods differed among network properties that were adopted to assess individual differences. Particularly, high-resolution WM networks with differing edge definitions showed convergent individual differences in the spatial pattern of both WM connections and nodal efficiency. For the network global and local efficiencies, low-resolution and high-resolution WM networks for most edge definitions consistently exhibited a highly convergent pattern in individual differences. Finally, the test-retest analysis revealed a decent temporal reproducibility for the patterns of between-method convergence/divergence. Together, the results of the present study demonstrated a measure-dependent effect of network construction methods on the individual difference of WM network properties.

摘要

利用扩散磁共振成像,许多研究采用不同的网络构建方法(节点/边的定义)对全脑白质(WM)网络的特性进行了研究。然而,构建方法如何影响WM网络的个体差异,特别是不同方法是否能提供个体差异的趋同或不同模式,在很大程度上仍然未知。在此,我们应用10种常用方法在健康年轻成人人群(57名受试者)中构建全脑WM网络,其中涉及两种节点定义(低分辨率和高分辨率)和五种边的定义(二元、基于FA加权、基于纤维密度加权、长度校正纤维密度加权和连接概率加权)。对于这些WM网络,从三个网络方面系统地分析了个体差异:(1)WM连接的空间模式,(2)节点效率的空间模式,以及(3)网络全局和局部效率。有趣的是,我们发现一些网络构建方法在个体差异模式方面是趋同的,但与其他方法不同。此外,方法之间的趋同/不同在用于评估个体差异的网络属性中也有所不同。特别是,具有不同边定义的高分辨率WM网络在WM连接和节点效率的空间模式上显示出趋同的个体差异。对于网络全局和局部效率,大多数边定义的低分辨率和高分辨率WM网络在个体差异上始终呈现出高度趋同的模式。最后,重测分析显示了方法间趋同/不同模式具有良好的时间可重复性。总之,本研究结果证明了网络构建方法对WM网络属性个体差异的测量依赖效应。

相似文献

2
Abnormal brain white matter network in young smokers: a graph theory analysis study.
Brain Imaging Behav. 2018 Apr;12(2):345-356. doi: 10.1007/s11682-017-9699-6.
3
Edge density imaging: mapping the anatomic embedding of the structural connectome within the white matter of the human brain.
Neuroimage. 2015 Apr 1;109:402-17. doi: 10.1016/j.neuroimage.2015.01.007. Epub 2015 Jan 12.
4
Reproducibility and intercorrelation of graph theoretical measures in structural brain connectivity networks.
Med Image Anal. 2019 Feb;52:56-67. doi: 10.1016/j.media.2018.10.009. Epub 2018 Oct 26.
5
Local termination pattern analysis: a tool for comparing white matter morphology.
Brain Imaging Behav. 2014 Jun;8(2):292-9. doi: 10.1007/s11682-013-9254-z.
6
Statistical analysis of minimum cost path based structural brain connectivity.
Neuroimage. 2011 Mar 15;55(2):557-65. doi: 10.1016/j.neuroimage.2010.12.012. Epub 2010 Dec 13.
7
Whole-brain anatomical networks: does the choice of nodes matter?
Neuroimage. 2010 Apr 15;50(3):970-83. doi: 10.1016/j.neuroimage.2009.12.027. Epub 2009 Dec 24.
9
Abnormal white matter structural networks characterize heroin-dependent individuals: a network analysis.
Addict Biol. 2016 May;21(3):667-78. doi: 10.1111/adb.12234. Epub 2015 Mar 4.
10
Conserved and variable architecture of human white matter connectivity.
Neuroimage. 2011 Jan 15;54(2):1262-79. doi: 10.1016/j.neuroimage.2010.09.006. Epub 2010 Sep 17.

引用本文的文献

1
"Touching" the brain: braille reading mitigates the SC-FC decoupling of brain networks in congenital blindness.
Brain Struct Funct. 2025 Jul 7;230(6):114. doi: 10.1007/s00429-025-02975-9.
2
Controversies and progress on standardization of large-scale brain network nomenclature.
Netw Neurosci. 2023 Oct 1;7(3):864-905. doi: 10.1162/netn_a_00323. eCollection 2023.
3
Global Alterations of Whole Brain Structural Connectome in Parkinson's Disease: A Meta-analysis.
Neuropsychol Rev. 2023 Dec;33(4):783-802. doi: 10.1007/s11065-022-09559-y. Epub 2022 Sep 20.
4
Methodological evaluation of individual cognitive prediction based on the brain white matter structural connectome.
Hum Brain Mapp. 2022 Aug 15;43(12):3775-3791. doi: 10.1002/hbm.25883. Epub 2022 Apr 27.
5
Disconnectome of the migraine brain: a "connectopathy" model.
J Headache Pain. 2021 Aug 28;22(1):102. doi: 10.1186/s10194-021-01315-6.
6
Disrupted Topological Organization in White Matter Networks in Unilateral Sudden Sensorineural Hearing Loss.
Front Neurosci. 2021 Jul 12;15:666651. doi: 10.3389/fnins.2021.666651. eCollection 2021.
8
Executive function and its relation to anatomical connectome in homosexual and heterosexual men.
Quant Imaging Med Surg. 2020 Oct;10(10):1973-1983. doi: 10.21037/qims-19-821b.
9
Older adults benefit from more widespread brain network integration during working memory.
Neuroimage. 2020 Sep;218:116959. doi: 10.1016/j.neuroimage.2020.116959. Epub 2020 May 20.

本文引用的文献

1
Global tractography with embedded anatomical priors for quantitative connectivity analysis.
Front Neurol. 2014 Nov 17;5:232. doi: 10.3389/fneur.2014.00232. eCollection 2014.
2
The effects of SIFT on the reproducibility and biological accuracy of the structural connectome.
Neuroimage. 2015 Jan 1;104:253-65. doi: 10.1016/j.neuroimage.2014.10.004. Epub 2014 Oct 12.
3
Evaluation and statistical inference for human connectomes.
Nat Methods. 2014 Oct;11(10):1058-63. doi: 10.1038/nmeth.3098. Epub 2014 Sep 7.
4
Development of human brain structural networks through infancy and childhood.
Cereb Cortex. 2015 May;25(5):1389-404. doi: 10.1093/cercor/bht335. Epub 2013 Dec 11.
5
Test-retest reliability of structural brain networks from diffusion MRI.
Neuroimage. 2014 Feb 1;86:231-43. doi: 10.1016/j.neuroimage.2013.09.054. Epub 2013 Oct 2.
6
BrainNet Viewer: a network visualization tool for human brain connectomics.
PLoS One. 2013 Jul 4;8(7):e68910. doi: 10.1371/journal.pone.0068910. Print 2013.
8
Abnormal rich club organization and functional brain dynamics in schizophrenia.
JAMA Psychiatry. 2013 Aug;70(8):783-92. doi: 10.1001/jamapsychiatry.2013.1328.
9
The trade-off between wiring cost and network topology in white matter structural networks in health and migraine.
Exp Neurol. 2013 Oct;248:196-204. doi: 10.1016/j.expneurol.2013.04.012. Epub 2013 May 3.
10
Graph analysis of the human connectome: promise, progress, and pitfalls.
Neuroimage. 2013 Oct 15;80:426-44. doi: 10.1016/j.neuroimage.2013.04.087. Epub 2013 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验