氢氧化镁在种植体周围骨改建过程中暂时增强成骨细胞活性,减少破骨细胞数量。
Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling.
机构信息
Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, 30625 Hannover, Germany.
出版信息
Acta Biomater. 2010 May;6(5):1861-8. doi: 10.1016/j.actbio.2009.12.037. Epub 2009 Dec 24.
Repeated observations of enhanced bone growth around various degradable magnesium alloys in vivo raise the question: what is the major mutual origin of this biological stimulus? Several possible origins, e.g. the metal surface properties, electrochemical interactions and biological effects of alloying elements, can be excluded by investigating the sole bone response to the purified major corrosion product of all magnesium alloys, magnesium hydroxide (Mg(OH)(2)). Isostatically compressed cylinders of pure Mg(OH)(2) were implanted into rabbit femur condyles for 2-6 weeks. We observed a temporarily increased bone volume (BV/TV) in the vicinity of Mg(OH)(2) at 4 weeks that returned to a level that was equal to the control at 6 weeks. The osteoclast surface (OcS/BS) was significantly reduced during the first four weeks around the Mg(OH)(2) cylinder, while an increase in osteoid surface (OS/BS) was observed at the same time. At 6 weeks, the OcS/BS adjacent to the Mg(OH)(2) cylinder was back within the same range of the control. The mineral apposition rate (MAR) was extensively enhanced until 4 weeks in the Mg(OH)(2) group before matching the control. Thus, the enhanced bone formation and temporarily decreased bone resorption resulted in a higher bone mass around the slowly dissolving Mg(OH)(2) cylinder. These data support the hypothesis that the major corrosion product Mg(OH)(2) from any magnesium alloy is the major origin of the observed enhanced bone growth in vivo. Further studies have to evaluate if the enhanced bone growth is mainly due to the local magnesium ion concentration or the local alkalosis accompanying the Mg(OH)(2) dissolution.
反复观察到各种可降解镁合金在体内周围骨生长增强,提出了一个问题:这种生物刺激的主要共同来源是什么?通过研究所有镁合金的主要腐蚀产物氢氧化镁(Mg(OH)(2))对单独的骨反应,可以排除几种可能的起源,例如金属表面特性、电化学相互作用和合金元素的生物效应。将等静压压缩的纯 Mg(OH)(2)圆柱体植入兔股骨髁 2-6 周。我们观察到在第 4 周时 Mg(OH)(2)附近的骨体积(BV/TV)暂时增加,到第 6 周时恢复到与对照组相同的水平。在第 4 周之前,Mg(OH)(2)圆柱体周围的破骨细胞表面(OcS/BS)显著减少,同时观察到类骨质表面(OS/BS)增加。在第 6 周时,Mg(OH)(2)圆柱体附近的 OcS/BS 回到与对照组相同的范围内。在第 4 周之前,Mg(OH)(2)组的矿化沉积率(MAR)广泛增强,然后与对照组相匹配。因此,在缓慢溶解的 Mg(OH)(2)圆柱体周围,增强的骨形成和暂时减少的骨吸收导致骨量增加。这些数据支持这样的假设,即任何镁合金的主要腐蚀产物 Mg(OH)(2)是体内观察到的增强骨生长的主要来源。进一步的研究必须评估增强的骨生长主要是由于局部镁离子浓度还是伴随 Mg(OH)(2)溶解的局部碱中毒。