Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States.
Department of Material Science and Technology, Southwest Forestry University, 300 Bailong Road, Kunming 650224, P.R. China.
ACS Appl Mater Interfaces. 2024 Oct 9;16(40):54716-54730. doi: 10.1021/acsami.4c13811. Epub 2024 Sep 29.
Biodegradable polymer-based nanocomposite coatings provide multiple advantages to modulate the corrosion resistance and cytocompatibility of magnesium (Mg) alloys for biomedical applications. Biodegradable poly(glycerol sebacate) (PGS) is a promising candidate used for medical implant applications. In this study, we synthesized a new PGS nanocomposite system consisting of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles and developed a spray coating process to produce the PGS nanocomposite layer on pretreated Mg substrates, which improved the coating adhesion at the interface and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). Prior to the spray coating process of polymer-based nanocomposites, the Mg substrates were pretreated in alkaline solutions to enhance the interfacial adhesion strength of the polymer-based nanocomposite coatings. The addition of HA and MgO nanoparticles (nHA and nMgO) to the PGS matrix, as well as the alkaline pretreatment of the Mg substrates, significantly enhanced the interfacial adhesion strength when compared with the PGS coating on the nontreated Mg control. The average BMSC adhesion densities were higher on the PGS/nHA/nMgO coated Mg than the noncoated Mg controls under direct contact conditions. Moreover, the addition of nHA and nMgO to the PGS matrix and coating the nanocomposite onto Mg substrates increased the average BMSC adhesion density when compared with the PGS/nHA/nMgO coated titanium (Ti) and PGS coated Mg controls under direct contact. Therefore, the spray coating process of PGS/nHA/nMgO nanocomposites on Mg substrates or other biodegradable metal substrates could provide a promising surface treatment strategy for biodegradable implant applications.
基于可生物降解聚合物的纳米复合涂层为调节镁(Mg)合金的耐腐蚀性和细胞相容性提供了多种优势,可用于生物医学应用。可生物降解的聚(甘油癸二酸酯)(PGS)是一种有前途的用于医疗植入物应用的候选材料。在这项研究中,我们合成了一种由羟基磷灰石(HA)和氧化镁(MgO)纳米粒子组成的新型 PGS 纳米复合体系,并开发了一种喷涂涂层工艺,在预处理的 Mg 基底上制备 PGS 纳米复合层,从而改善了界面处的涂层附着力及其与骨髓间充质干细胞(BMSCs)的细胞相容性。在进行基于聚合物的纳米复合材料的喷涂涂层工艺之前,将 Mg 基底在碱性溶液中进行预处理,以增强聚合物基纳米复合材料涂层的界面附着力。与未经处理的 Mg 对照相比,将 HA 和 MgO 纳米粒子(nHA 和 nMgO)添加到 PGS 基质中以及对 Mg 基底进行碱性预处理,显著提高了界面附着力。在直接接触条件下,与未经处理的 Mg 对照相比,在 PGS/nHA/nMgO 涂层 Mg 上的平均 BMSC 粘附密度更高。此外,与 PGS/nHA/nMgO 涂层钛(Ti)和 PGS 涂层 Mg 对照相比,将 nHA 和 nMgO 添加到 PGS 基质中并将纳米复合材料涂覆到 Mg 基底上,增加了平均 BMSC 粘附密度。因此,在 Mg 基底或其他可生物降解金属基底上喷涂 PGS/nHA/nMgO 纳米复合材料的工艺可为可生物降解植入物的应用提供一种有前途的表面处理策略。