Suppr超能文献

聚合物刷:通向力敏表面的途径。

Polymer brushes: routes toward mechanosensitive surfaces.

机构信息

Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB21EW, UK.

出版信息

Acc Chem Res. 2010 Mar 16;43(3):466-74. doi: 10.1021/ar900237r.

Abstract

Soft nanotechnology involves both understanding the behavior of soft matter and using these components to build useful nanoscale structures and devices. However, molecular scale properties such as Brownian motion, diffusion, surface forces, and conformational flexibility dominate the chemistry and physics in soft nanotechnology, and therefore the design rules for generating functional structures from soft, self-assembled materials are still developing. Biological motors illustrate how wet nanoscale machines differ from their macroscopic counterparts. These molecular machines convert chemical energy into mechanical motion through an isothermal process: chemical reactions generate chemical potential and diffusion of ions, leading to conformational changes in proteins and the production of mechanical force. Because the actuation steps form a thermodynamic cycle that is reversible, the application of mechanical forces can also generate a chemical potential. This reverse process of mechanotransduction is the underlying sensing and signaling mechanism for a wide range of physiological phenomena such as hearing, touch, and growth of bone. Many of the biological systems that respond to mechanical stimuli do this via complex stress-activated ion channels or remodeling of the actin cytoskeleton. These biological actuation and mechanosensing processes are rather different from nano- and microelectromechanical systems (NEMS and MEMS) produced via semiconductor fabrication technologies. In our group, we are working to emulate biological mechanotransduction by systematically developing building blocks based on polymer brushes. In this soft nanotechnology approach to mechanotransduction, the chemical building blocks are polymer chains whose conformational changes and actuation can be investigated at a very basic level in polymer brushes, particularly polyelectrolyte brushes. Because these polymer brushes are easily accessible synthetically with control over parameters such as composition, chain length, and chain density, brushes provide a robust platform to study the coupling of mechanical forces with conformational changes of the chains. This Account provides an overview of our recent research in the design of mechanosensitive polymer brushes starting with the demonstration of nanoactuators and leading to our first attempts toward the creation of artificial mechanotransduction elements. As the brushes collapse in response to external triggers such as pH and ion concentration, polyelectrolyte brushes provide stimuli-responsive films. These collapse transitions lead to the generation of mechanical forces, and by reversing the chain of events, we designed a mechanically responsive film with a chemical output. Having reported an initial proof-of-principle experiment, we think that the stage is set for the preparation of more elaborate mechanosensitive surfaces.

摘要

软纳科技既包含对软物质行为的理解,也包含利用这些组件构建有用的纳米级结构和设备。然而,布朗运动、扩散、表面力和构象灵活性等分子级特性主导着软纳科技中的化学和物理,因此,从软的自组装材料生成功能结构的设计规则仍在不断发展。生物马达展示了湿纳米机器如何与宏观机器不同。这些分子机器通过等温过程将化学能转化为机械运动:化学反应产生化学势和离子扩散,导致蛋白质构象变化并产生机械力。由于致动步骤形成一个热力学循环,该循环是可逆的,因此施加机械力也可以产生化学势。这种机械转导的反向过程是广泛生理现象(如听觉、触觉和骨骼生长)的基本传感和信号机制。许多对机械刺激做出响应的生物系统通过复杂的应激激活离子通道或肌动蛋白细胞骨架的重塑来实现这一点。这些生物致动和机械传感过程与通过半导体制造技术产生的纳米和微机电系统(NEMS 和 MEMS)有很大的不同。在我们的小组中,我们正致力于通过系统地开发基于聚合物刷的构建块来模拟生物机械转导。在这种软纳技术的机械转导方法中,化学构建块是聚合物链,其构象变化和致动可以在聚合物刷中非常基础的水平上进行研究,特别是聚电解质刷。由于这些聚合物刷可以通过合成轻松获得,并且可以控制组成、链长和链密度等参数,因此刷提供了一个强大的平台来研究机械力与链构象变化的耦合。本综述提供了我们最近在设计机械敏感聚合物刷方面的研究概述,从纳米致动器的演示开始,最终尝试创建人工机械转导元件。当聚合物刷响应外部触发(如 pH 和离子浓度)而坍塌时,聚电解质刷提供了对刺激有响应的薄膜。这些坍塌转变会产生机械力,通过反转事件链,我们设计了一种具有化学输出的机械响应薄膜。在报道了初步的原理验证实验之后,我们认为准备更精细的机械敏感表面的时机已经成熟。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验