Xu Qiaobing, Rioux Robert M, Dickey Michael D, Whitesides George M
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, USA.
Acc Chem Res. 2008 Dec;41(12):1566-77. doi: 10.1021/ar700194y.
This Account reviews nanoskiving--a new technique that combines thin-film deposition of metal on a topographically contoured substrate with sectioning using an ultramicrotome--as a method of fabricating nanostructures that could replace conventional top-down techniques in selected applications. Photolithography and scanning beam lithography, conventional top-down techniques to generate nanoscale structures and nanostructured materials, are useful, versatile, and highly developed, but they also have limitations: high capital and operating costs, limited availability of the facilities required to use them, an inability to fabricate structures on nonplanar surfaces, and restrictions on certain classes of materials. Nanoscience and nanotechnology would benefit from new, low-cost techniques to fabricate electrically and optically functional structures with dimensions of tens of nanometers, even if (or perhaps especially if) these techniques have a different range of application than does photolithography or scanning beam lithography. Nanoskiving provides a simple and convenient procedure to produce arrays of structures with cross-sectional dimensions in the 30-nm regime. The dimensions of the structures are determined by (i) the thickness of the deposited thin film (tens of nanometers), (ii) the topography (submicrometer, using soft lithography) of the surface onto which the thin film is deposited, and (iii) the thickness of the section cut by the microtome (> or =30 nm by ultramicrotomy). The ability to control the dimensions of nanostructures, combined with the ability to manipulate and position them, enables the fabrication of nanostructures with geometries that are difficult to prepare by other methods. The nanostructures produced by nanoskiving are embedded in a thin epoxy matrix. These epoxy slabs, although fragile, have sufficient mechanical strength to be manipulated and positioned; this mechanical integrity allows the nanostructures to be stacked in layers, draped over curved surfaces, and suspended across gaps, while retaining the in-plane geometry of the nanostructures embedded in the epoxy. After removal of the polymer matrix by plasma oxidation, these structures generate suspended and draped nanostructures and nanostructures on curved surfaces. Two classes of applications, in optics and in electronics, demonstrate the utility of nanostructures fabricated by nanoskiving. This technique will be of primary interest to researchers who wish to generate simple nanostructures, singly or in arrays, more simply and quickly than can be accomplished in the clean-room. It is easily accessible to those not trained in top-down procedures for fabrication and those with limited or no access to the equipment and facilities needed for photolithography or scanning-beam fabrication. This Account discusses a new fabrication method (nanoskiving) that produces arrays of metal nanostructures. The defining process in nanoskiving is cutting slabs from a polymeric matrix containing embedded, more extended metal structures.
本综述介绍了纳米切片技术——一种将金属薄膜沉积在具有形貌轮廓的基底上,并使用超薄切片机进行切片的新技术——作为一种制造纳米结构的方法,该方法在某些应用中可以替代传统的自上而下的技术。光刻和扫描束光刻是用于生成纳米级结构和纳米结构材料的传统自上而下的技术,它们有用、通用且高度发达,但也有局限性:资本和运营成本高、使用所需设施的可用性有限、无法在非平面表面上制造结构以及对某些材料类别的限制。纳米科学和纳米技术将受益于新的低成本技术,以制造尺寸为几十纳米的电功能和光功能结构,即使(或者也许特别是如果)这些技术的应用范围与光刻或扫描束光刻不同。纳米切片提供了一种简单方便的程序,可生产横截面尺寸在30纳米范围内的结构阵列。这些结构的尺寸由以下因素决定:(i)沉积薄膜的厚度(几十纳米),(ii)沉积薄膜的表面的形貌(亚微米级,使用软光刻),以及(iii)切片机切割的切片厚度(通过超薄切片术≥30纳米)。控制纳米结构尺寸的能力,再加上操纵和定位它们的能力,使得能够制造出用其他方法难以制备的几何形状的纳米结构。通过纳米切片产生的纳米结构嵌入在薄的环氧树脂基质中。这些环氧树脂板虽然易碎,但具有足够的机械强度以进行操纵和定位;这种机械完整性允许纳米结构分层堆叠、覆盖在曲面上并跨越间隙悬挂,同时保持嵌入环氧树脂中的纳米结构的平面内几何形状。通过等离子体氧化去除聚合物基质后,这些结构会在曲面上产生悬浮和覆盖的纳米结构以及纳米结构。光学和电子学中的两类应用展示了通过纳米切片制造的纳米结构的实用性。对于那些希望比在洁净室中更简单、快速地生成单个或阵列形式的简单纳米结构的研究人员来说,这项技术将是他们的主要兴趣所在。对于那些没有接受过自上而下制造程序培训以及那些无法使用光刻或扫描束制造所需设备和设施的人来说,这项技术很容易获得。本综述讨论了一种产生金属纳米结构阵列的新制造方法(纳米切片)。纳米切片中的定义过程是从包含嵌入的、更细长金属结构的聚合物基质中切割板。