Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA.
J Phys Chem B. 2010 Jan 21;114(2):870-6. doi: 10.1021/jp908368k.
Using a computational strategy based on density functional theory calculations, we successfully designed a fluorescent sensor for detecting Zn(2+) [J. Phys. Chem. B 2006, 110, 22991-22994]. In this work, we report our further studies on the computational design protocol for developing Photoinduced Electron Transfer (PET) fluorescence sensors. This protocol was applied to design a PET fluorescence sensor for Zn(2+) ions, which consists of anthracene as the fluorophore connected to pyridine as the receptor through dimethylethanamine as the linker. B3LYP and time-dependent B3LYP calculations were performed with the basis set 6-31G(d,p), 6-31+G(d,p), 6-311G(d,p), and 6-311+G(d,p). The calculated HOMO and LUMO energies of the fluorophore and receptor using all four basis sets show that the relative energy levels remain unchanged. This indicates that any of these basis sets can be used in calculating the relative molecular orbital (MO) energy levels. Furthermore, the relative MO energies of the independent fluorophore and receptor are not altered when they are linked together, which suggests that one can calculate the MO energies of these components separately and use them as the MO energies of the free sensor. These are promising outcomes for the computational design of sensors, though more case studies are needed to further confirm these conclusions. The binding selectivity studies indicate that the predicted sensor can be used for Zn(2+) even in the presence of the divalent cation, Ca(2+).
我们使用基于密度泛函理论计算的计算策略,成功设计了一种用于检测 Zn(2+)的荧光传感器[J. Phys. Chem. B 2006, 110, 22991-22994]。在这项工作中,我们报告了我们在开发光诱导电子转移(PET)荧光传感器的计算设计方案方面的进一步研究。该方案应用于设计用于 Zn(2+)离子的 PET 荧光传感器,该传感器由蒽作为荧光团,通过二甲乙醇胺作为连接体连接到吡啶作为受体。使用基组 6-31G(d,p)、6-31+G(d,p)、6-311G(d,p)和 6-311+G(d,p)进行了 B3LYP 和含时 B3LYP 计算。使用所有四个基组计算荧光团和受体的 HOMO 和 LUMO 能量表明相对能级保持不变。这表明可以使用这些基组中的任何一个来计算相对分子轨道(MO)能级。此外,当将独立的荧光团和受体连接在一起时,它们的相对 MO 能级不会改变,这表明可以分别计算这些组件的 MO 能量并将其用作游离传感器的 MO 能量。尽管需要更多的案例研究来进一步证实这些结论,但这些结果为传感器的计算设计提供了有希望的结果。结合选择性研究表明,预测的传感器即使在存在二价阳离子 Ca(2+)的情况下也可用于 Zn(2+)。