Suppr超能文献

基于医院的病例对照研究,使用症状指数识别卵巢癌。

A hospital-based case-control study of identifying ovarian cancer using symptom index.

机构信息

Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea.

出版信息

J Gynecol Oncol. 2009 Dec;20(4):238-42. doi: 10.3802/jgo.2009.20.4.238. Epub 2009 Dec 28.

Abstract

OBJECTIVE

Recently, a symptom index for identification of ovarian cancer, based on specific symptoms along with their frequency and duration, was proposed. The current study aimed at validation of this index in Korean population.

METHODS

A case-control study of 116 women with epithelial ovarian cancer and 209 control women was conducted using questionnaires on eight symptoms. These included pelvic/abdominal pain, urinary urgency/frequency, increased abdominal size/bloating, difficulty eating/feeling full. The symptom index was considered positive if any of the 8 symptoms present for <1 year that occurred >12 times per month. The symptoms were compared between ovarian cancer group and control group using chi-square test. Logistic regression analysis was used to determine whether the index predicted cancer. Sensitivity and specificity of the symptom index were also determined.

RESULTS

The symptom index was positive in 65.5% of women with ovarian cancer, in 31.1% of women with benign cysts, and in 6.7% of women on routine screening (ps<0.001). Significantly higher proportion of ovarian cancer patients were positive for each symptom as compared with control group (ps<0.001). Results from the logistic regression indicated that the symptom index independently predicted cancer (p<0.001; OR, 10.51; 95% CI, 6.14 to 17.98). Overall, the sensitivity and specificity of the symptom index were 65.5% and 84.7%, respectively. Analyses of sensitivity by stage showed that the index was positive in 44.8% of patients with stage I/II disease and in 72.9% of patients with stage III/IV disease.

CONCLUSION

The current study supported previous studies suggesting that specific symptoms were useful in identifying women with ovarian cancer.

摘要

目的

最近,提出了一种基于特定症状及其频率和持续时间的卵巢癌识别症状指数。本研究旨在验证该指数在韩国人群中的适用性。

方法

采用问卷调查的方式,对 116 名上皮性卵巢癌患者和 209 名对照妇女进行了一项病例对照研究,共包括 8 种症状,包括盆腔/腹部疼痛、尿急/尿频、腹部增大/肿胀、进食困难/饱腹感。如果 8 种症状中有任何一种存在<1 年且每月出现>12 次,则认为症状指数阳性。采用卡方检验比较卵巢癌组和对照组的症状。采用 logistic 回归分析确定该指数是否能预测癌症。还确定了症状指数的敏感性和特异性。

结果

卵巢癌患者中症状指数阳性者占 65.5%,良性囊肿患者中占 31.1%,常规筛查患者中占 6.7%(p<0.001)。与对照组相比,卵巢癌患者各症状阳性比例显著较高(p<0.001)。logistic 回归分析结果表明,症状指数独立预测癌症(p<0.001;OR,10.51;95%CI,6.14 至 17.98)。总体而言,症状指数的敏感性和特异性分别为 65.5%和 84.7%。按分期分析敏感性显示,该指数在 I/II 期患者中的阳性率为 44.8%,在 III/IV 期患者中的阳性率为 72.9%。

结论

本研究支持先前的研究结果,表明特定症状有助于识别卵巢癌患者。

相似文献

3
Predictive value of symptoms for early detection of ovarian cancer.症状对卵巢癌早期检测的预测价值。
J Natl Cancer Inst. 2010 Feb 24;102(4):222-9. doi: 10.1093/jnci/djp500. Epub 2010 Jan 28.
5
Modified Goff Symptom Index: Simple triage tool for ovarian malignancy.改良戈夫症状指数:卵巢恶性肿瘤的简易分诊工具。
Sultan Qaboos Univ Med J. 2015 Aug;15(3):e370-5. doi: 10.18295/squmj.2015.15.03.011. Epub 2015 Aug 24.
10
No. 385-Indications for Pelvic Examination.第385号——盆腔检查的适应症
J Obstet Gynaecol Can. 2019 Aug;41(8):1221-1234. doi: 10.1016/j.jogc.2018.12.007.

引用本文的文献

3
Pathways to ovarian cancer diagnosis: a qualitative study.卵巢癌诊断途径:一项定性研究。
BMC Womens Health. 2022 Nov 4;22(1):430. doi: 10.1186/s12905-022-02016-1.
9
Modified Goff Symptom Index: Simple triage tool for ovarian malignancy.改良戈夫症状指数:卵巢恶性肿瘤的简易分诊工具。
Sultan Qaboos Univ Med J. 2015 Aug;15(3):e370-5. doi: 10.18295/squmj.2015.15.03.011. Epub 2015 Aug 24.

本文引用的文献

4
An experiment in earlier detection of ovarian cancer.一项卵巢癌早期检测的实验。
Lancet. 2007 Jun 23;369(9579):2051. doi: 10.1016/S0140-6736(07)60952-0.
8
Presenting symptoms of epithelial ovarian cancer.上皮性卵巢癌的临床表现。
Aust N Z J Obstet Gynaecol. 2005 Jun;45(3):211-4. doi: 10.1111/j.1479-828X.2005.00391.x.
9
Global cancer statistics, 2002.2002年全球癌症统计数据。
CA Cancer J Clin. 2005 Mar-Apr;55(2):74-108. doi: 10.3322/canjclin.55.2.74.
10
Ovarian cancer: the neglected diagnosis.卵巢癌:被忽视的诊断。
Mayo Clin Proc. 2004 Oct;79(10):1277-82. doi: 10.4065/79.10.1277.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验