Suppr超能文献

预测酿酒酵母中功能性上游开放阅读框。

Predicting functional upstream open reading frames in Saccharomyces cerevisiae.

机构信息

Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden.

出版信息

BMC Bioinformatics. 2009;10:451. doi: 10.1186/1471-2105-10-451. Epub 2009 Dec 30.

Abstract

BACKGROUND

Some upstream open reading frames (uORFs) regulate gene expression (i.e., they are functional) and can play key roles in keeping organisms healthy. However, how uORFs are involved in gene regulation is not yet fully understood. In order to get a complete view of how uORFs are involved in gene regulation, it is expected that a large number of experimentally verified functional uORFs are needed. Unfortunately, wet-experiments to verify that uORFs are functional are expensive.

RESULTS

In this paper, a new computational approach to predicting functional uORFs in the yeast Saccharomyces cerevisiae is presented. Our approach is based on inductive logic programming and makes use of a novel combination of knowledge about biological conservation, Gene Ontology annotations and genes' responses to different conditions. Our method results in a set of simple and informative hypotheses with an estimated sensitivity of 76%. The hypotheses predict 301 further genes to have 398 novel functional uORFs. Three (RPC11, TPK1, and FOL1) of these 301 genes have been hypothesised, following wet-experiments, by a related study to have functional uORFs. A comparison with another related study suggests that eleven of the predicted functional uORFs from genes LDB17, HEM3, CIN8, BCK2, PMC1, FAS1, APP1, ACC1, CKA2, SUR1, and ATH1 are strong candidates for wet-lab experimental studies.

CONCLUSIONS

Learning based prediction of functional uORFs can be done with a high sensitivity. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help to elucidate the regulatory roles of uORFs.

摘要

背景

一些上游开放阅读框 (uORFs) 调节基因表达(即它们是有功能的),并在保持生物体健康方面发挥关键作用。然而,uORFs 如何参与基因调控尚未完全了解。为了全面了解 uORFs 如何参与基因调控,需要大量经过实验验证的功能性 uORFs。不幸的是,验证 uORFs 具有功能的湿实验代价高昂。

结果

本文提出了一种新的计算方法,用于预测酵母酿酒酵母中的功能性 uORFs。我们的方法基于归纳逻辑编程,并利用生物保守性、基因本体论注释和基因对不同条件的反应的知识的新组合。我们的方法产生了一组简单而有信息量的假设,估计灵敏度为 76%。这些假设预测了 301 个进一步的基因具有 398 个新的功能性 uORFs。其中 301 个基因中的 3 个(RPC11、TPK1 和 FOL1)已经被相关研究假设为具有功能性 uORFs。与另一项相关研究的比较表明,从基因 LDB17、HEM3、CIN8、BCK2、PMC1、FAS1、APP1、ACC1、CKA2、SUR1 和 ATH1 预测的 11 个功能性 uORFs 是后续湿实验研究的强有力候选者。

结论

可以用高灵敏度对功能性 uORFs 进行基于学习的预测。本研究中的预测可以作为后续湿实验验证的候选者列表,并可能有助于阐明 uORFs 的调控作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7699/2813248/cf01286cb585/1471-2105-10-451-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验